
fL 7DRO-A62 498 A PRODUCTIVITY ENHANCEMENT STUDY FOR THE US RMY 1/2 T
INFORMATION SYSTEMS ENGINEERING COMMAND(U) NAVAL
POSTRDUATE SCHOOL MONTEREY CA T F ROBERTSON SEP 85

NCLASSIFIED /9/2 NL

1.Q 5 LI *
-.

.1.

1.-i 4 II o
JJJ.25 I1. 4 1.6

MICROCOPY RESOLUTION TEST CHART
NAT'ONAL BUREAU Of STANDARDS - -96 -

.........................

*i NAVAL POSTGRADUATE SCHOOL
Monterey, Californiao0

DTIC

THESIS
A PRODUCTIVITY ENHANCEMENT STUDY FOR THE

U.S. ARMY INFORMATION SYSTEMS
ENGINEERING COMMAND

by

Timothy F. Robertson

September 1985

Thesis Advisor: Norman R. Lyons
. Co-Advisor: David Whipple

• IJ Approved for public release; distribution is unlimited

85 12 20 035:..........................:..:...::::::::::::::::::::::::::::::::::: ::-,.: : :::: v::. :::::::::::

SECURITY CLASSIFICATION OF THIS PAGE (Mhen Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER j2. GovTr ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle) S. TYPE OF REPORT A PERIOD COvERED

A Productivity Enhancement Study for the Master's Thesis
U.S. Army Information Systems Engineering September 1985
Command 6 PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 6. CONTRACT OR GRANT NUMSER(s)

Timothy F. Robertson

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROjECT, TASK

Naval Postgraduate School AREA A WORK UNIT NUMBERS

Monterey, CA 93943-5100

II. CONTROLLING OFFICE NAME AND AnORESS Q. REP~ORT DATE,

Naval Postgraduate School ep ember 1985

Monterey, CA 93943-5100 13- NUMBEROFPAGES
134

14. MONITORING AGENCY NAME & ADORESS(of dilferent from Controlling Office) IS SECURITY CLASS. I'f tle report)

UNCLASSIFIED
IS@. DECLASSIFICATiON DOWNGRADING

SCmEOULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT 0i o the abetract entered In Bl.ck 20. If different from Report)

IS. SUPPLEMENTARY NOTES

I. KEY WORDS (Continue 'it 1 "ete sde If necessary end identify by block number)

productivity, productivity improvement program, software develop
ment, software maintenance, software tools, software development
environment, prototyping, evolutionary development.

20 ABSTRACT (Continue on reverse side If necessary and Identify by block number)

'A productivity enhancement study for the U.S. Army Information
Systems Engineering Command (ISEC) is described. Recommendations
for improvement and recommendations for further study are provided
ISEC has an important mission with regard to managing the Army's
information resources. ISEC is tasked with developing and main-
taining the Standard Army Multi-command Management Information
Systems (STAMMIS). Because of resource constraints and increased
mission requirrments, it is essential that ISEC (Continued)

DD FORM 1473 Eo,'ON OF I NOV GS IS oSO.ETE

S N 01 - 1 F. 01 4- t0o, 1 SECURITY CLASSIFICATION OF THIS PAGE (When Dte Entered)

.,7

SECURITY CLASSIPICATION OF THIS PAG (h Da EnaIta

ABSTRACT (Continued)

.increase productivity to meet the information needs of the Army.
Specifically, this thesis: (1) evaluates the traditional soft-
ware life cycle in contrast with prototyping and evolutionary

* development; (2) discusses project management issues; (3) ex-
plains the need for integrated software tools; (4) discusses
human factors in the software development process; and (5) pro-

*poses a system for capturing and measuring productivity.

- S N 0102- LF- 014. 6601

SECURITY CLASSIFICATION OF THIS PAOE("haf Date Efntaed)

2

* * ...

Approved for public release; distribution is unlimited.

A Productivity Enhancement Study for the
U.S. Army Information Systems Engineering Command

by

Timothy F. Robertson
Captain, United States Army

B.S. Arizona State University

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1985

Author: I ty F. Robertson

Approved by: Nn

wtme f. reer, jr., Chairman,Department of t..n ~ i Sciences

Dean of Information an-aVicy Sciences

3

ABSTRACT

A productivity enhancement study for the U.S. Army

- Information Systems Engineering Command (ISEC) is described.

Recommendations for improvement and recommendations for

further study are provided. ISEC has an important mission

with regard to managing the Army's information resources.

ISEC is tasked with developing and maintaining the Standard

Army Multi-command Management Information Systems (STAMMIS).

Because of resource constraints and increased mission

requirements, it is essential that ISEC increase

productivity to meet the information needs of the Army.

Specifically, this thesis: (1) evaluates the

. traditional software life cycle in contrast with prototyping

and evolutionary development; (2) discusses project

management issues; (3) explains the need for integrated

software tools; (4) discusses human factors in the software

*development process; and (5) proposes a system for capturing

and measuring productivity.

4

, .'? ' - ./ - . - - --- :. ,. ': - . : . "j . . , . . : ,

TABLE OF CONTENTS

I. INTRODUCTION10

A. PROBLEMS WITH SOFTWARE DEVELOPMENT 10

1. Reduced Hardware Costs 11

2. Applications and Invisible Backlogs . . 11

3. Shortage of Software Personnel 11

4. Problems with the Specification
Process12

5. Perception Problems 12

6. Abstract Product 12

7. Technological Change 13

8. Government Laws, Regulations, Policy
and Traditions13

B. THESIS ORGANIZATION AND OBJECTIVES 15

II. SOFTWARE DEVELOPMENT AT ISEC 17

A. ARMY INFORMATION MANAGEMENT AND ISEC 17

1. Recent Historical Background 17

2. Introduction to ISEC 18

3. The Evolution of Army Information
Management19

B. THE STAMMIS DEVELOPERS 21

C. BASIC PROBLEMS AT ISEC 23

1. Preface 23

2. Specification Problems 23

3. Political Conflicts 24

4. Lack of Skilled Professionals 24

5. Personnel Reductions 25

6. Contract Management Problems 25

7. Lack of Standardization 27

8. Organizational Turbulence 27

5

...

9. File Processing Shortcomings 27

D. CONCLUSION 29

III. PRODUCTIVITY MEASUREMENT AND IMPROVEMENT 30

A. INTRODUCTION 30

1. Overview 30

2. What Productivity is Not30

3. Productivity and Software
Development/Maintenance 31

B. MEASUREMENT FOR IMPROVEMENT 32

1. Why We Should Measure Productivity 32

2. Units of Measurement 34

C. IMPLEMENTATION OF A PRODUCTIVITY
MEASUREMENT SYSTEM 47

1. Overview 47

2. Implementing the Measurement System . . 47

D. SUMMARY 50

IV. REQUIREMENTS ANALYSIS AND SYSTEMS DEVELOPMENT

WITH PROTOTYPING 52

A. PROBLEMS WITH THE TRADITIONAL SOFTWARE

LIFE CYCLE 52

1. The Traditional Software Life Cycle . . . 52

2. Maintenance Considerations58

B. PROTOTYPING AND EVOLUTIONARY DEVELOPMENT . 61

C. ADVANTAGES OF PROTOTYPING 63

D. PROTOTYPING LIMITATIONS 65

E. A BRIEF OVERVIEW OF THE PROTOTYPING LIFE
CYCLE 67

F. PROTOTYPING APPLICABILITY AND
IMPLEMENTATION AT ISEC 68

G. PROTOTYPING AND EVOLUTIONARY DEVEOPMENT:
THE BOTTOM LINE 72

V. THE SOFTWARE DEVELOPMENT ENVIRONMENT 74

A. INTRODUCTION 74

B. THE PHYSICAL ENVIRONMENT 75

C. THE STRUCTURAL ENVIRONMENT 78

6
*.r~

.%Q* '*
.o. - . . .

-~~~~~~7 7 -.- 7"-'y -,A~-, , ?-

r1. Staffing 77

2. Awards and Incentives............79

D.3. Suggestion Programs............80

4. Flextime..................81

D.DEVELOPMENT AND MAINTENANCE TOOLS 83

1. Hardware Considerations..........83

2. Software Tools..................85

E. THE "INTELLECTUAL SKILLS" ENVIRONMENT 92

F. SUMMARY....................93

VI. SOFTWARE MANAGEMENT AND PRODUCTIVITY ISSUES . .. 95

A. INTRODUCTION..................95

B. GENERAL M4ANAGEMENT ISSUES.............95

1. Management Barriers to Productivit, . . . 95

2. Close to the Customer.............99

3. System Quality and Productivity 101

C. SOFTWARE DEVELOPMENT CONTRACTS 102

D. PROJECT PLANNING SYSTEMS..............104

1. Preface....................104

2. Project Management Software........106

3. The Putnam SLIM System 108

4. The COCOMO System...............109

E. PRODUCTIVITY IMPROVEMENT PROGRAM 110

F. SUMMARY......................115

VII. CONCLUSIONS AND RECOMMENDATIONS..........118

A. THESIS SUMMARY...................118

B. RECOMMENDATIONS................119

C. RECOMMENDATIONS FOR FURTHER STUDY.........121

APPENDIX A: ACRONYMS.....................123

APPENDIX B: USING GRADUATE STUDENTS TO IMPROVE
PRODUCTIVITY...................126

LIST OF REFERENCES....................128

INITIAL DISTRIBUTION LIST...................134

7

LIST OF TABLES

I STAGES OF DP GROWTH - NOLAN 20

II ADVANTAGES OF DATA BASE PROCESSING 28

III POTENTIAL BENEFITS OF MEASURING PRODUCTIVITY 34

IV ADVANTAGES OF THE 3 BASIC TYPES OF

PRODUCTIVITY MEASURES 36

V LIMITATIONS OF THE 3 BASIC TYPES OF

PRODUCTIVITY MEASURES 37

VI PROBLEMS WITH LINES OF CODE AS A PRODUCTIVITY

MEASURE 41

VII PROBLEMS WITH THE SPECIFICATION PROCESS 56

VIII ADVANTAGES OF PROTOTYPING 64

IX LIMITATIONS OF PROTOTYPING 66

X THE PHYSICAL PROGRAMMER ENVIRONMENT - IBM 76

XI STAFFING PRINCIPLES - BOEHM 79

XII BENEFITS OF PQ TEAMS - SUMANTH 83

XIII BENEFITS OF THE USE.IT TOOL SYSTEM 91

XIV SOFTWARE DEVELOPMENT CONTRACT PROBLEMS IN THE

GOVERNMENT 104

XV GUIDELINES FOR SOFTWARE DEVELOPMENT CONTRACTS 106

XVI KEY POINTS - SOFTWARE PRODUCTIVITY IMPROVEMENT

PROGRAM 116

XVII PRODUCTIVITY IMPROVEMENT PROGRAM PROBLEMS AND

SOLUTIONS 117

8

. ..•.

LIST OF FIGURES

2.1 STAMMIS Functional Areas, Examples and

Proponents 22

4.1 The Traditional Software Life Cycle53

4.2 The Department of Defense System Life Cycle 54

4.3 Relative Cost to Correct Errors in Software

Life Cycle 57

4.4 Maintenance - The Largest Cost Driver 59

4.5 Relative Effort for Maintenance Activities 60

4.6 The Prototyping Life Cycle67

Acceslon For

NTIS CRA&I
DTIC TAB
Unannounced 0

By
Dtribution I

Availability Codes

Avail arid I or

Ilk,

9

7

I. INTRODUCTION

A. PROBLEMS WITH SOFTWARE DEVELOPMENT

This study reviews how the U.S. Army Information

Systems Engineering Command (ISEC) develops and maintains

the software for the Army's management information systems

(MIS). The purpose of this thesis is to recommend ways of

improving productivity throughout STAMMIS development and

maintenance while maintaining or improving quality.

Resource constraints, budget and manpower reductions, and

expanding mission requirements have put pressure on ISEC to

look for better, faster, and smarter ways of doing business.

Adding to the difficulty is a whole host of software

development problems that plague the government and most

private companies as well.

The computer-related literature is replete with horror

stories about software products that have failed in one

respect or another. Software developers have earned a bad

reputation for delivering products that do not meet user

requirements, are late and are over budget. What are the

factors that are the roots of the so called "software

crisis?" The major contributing factors are: (1) reduced

hardware costs; (2) the applications backlog; (3) a shortage

of skilled software personnel; (4) the difficulties of

specifying what the software should do; (5) user perception

problems; (6) the abstract nature of the product; (7) the

rapid pace of technological change; and (8) curious

governmental regulations and policies.

10

F 1. Reduced Hardware Costs

The cost of computer hardware has been dropping

significantly during past several years. The average cost

decrease per year has been 15-30 percent. At the same time,

the processing power of computers has risen dramatically.

The resulting cost/performance ratio has improved immensely.

From 1959 to 1979, for example, it improved by six orders of

magnitude. To put this in perspective, a unit of processing

power that cost $1,000,000 in 1959 would cost only one

dollar in 1979. [Ref. 1: p. 84] Meanwhile, labor costs have

continued to rise. Today, software costs typically

represent the largest expenditure for systems.

2. Applications and Invisible Backlogs

Government leaders and industry management are

realizing that information is a resource. It requires

management, security, planning, and control just like other

precious assets. Users are becoming more sophisticated.

There is more hardware to support. These factors have

fueled demand for new applications at a rate faster than

present programmers can provide them. Many organizations

have a backlog of programming projects ranging from two to

four years. Behind this documented backlog of projects is

often an equally large "invisible backlog" of user

requirements that are unfulfilled. No one prepares the

justification to document these needs because there is no

hope of getting results in any reasonable period of time.

[Ref. 2: pp. 281-284]

3. Shortage of Software Personnel

There is an acknowledged shortage of skilled

programmers, analysts, and software managers. Estimates in

1984 reflected a shortage of software personnel in the U.S.

|1

...

of almost 100,000 with the gap expected to widen in the near

term. [Ref. 3: p. 30] The competition for professional

software personnel is intense in the private sector.

Government agencies have a difficult time competing with

industry for skilled personnel under these conditions.

4. Problems with the Specification Process

In software development, the key to writing good

software is capturing accurate and complete specifications.

The user and developer are usually from different technical

backgrounds. Thus, there is a natural cultural

communications gap between them. Usually the user does not

know exactly what he wants. Changes are common as more

experience is gained building and using the system. The

traditional software life cycle forces the developer to

freeze the specifications so that detailed design and coding

can begin. This results in an unstable foundation on which

to build the software. [Ref. 4: pp. 59-61]

5. Perception Problems

Most people neither understand nor appreciate the

problems involved in developing or maintaining software. it

is much more difficult to build software than our intuition

tells us that it should be. To the user, simple changes

appear to take much too long to implement. He gets

frustrated which leads to polarization between "the DPers"

and other organizational elements.

6. Abstract Product

Except for coding and documentation which are

typically done late in the software life cycle, there are

few tangible products by which to measure progress. Lack of

a physical product makes scheduling and resource estimation

difficult. It makes project management risky business.

12

Many organizations must also contract out for their software

applications because they lack the in-house assets or the

expertise to do it themselves. The effective writing and

management of software development contracts takes special

expertise and experience which marv organizations lack.

7. Technological Change

The growth of the computer industry and rapid rate

of technological change is unparalleled in history.

Managers and technicians alike have difficulty staying on

top of the latest developments in the field. Some react by

burying their heads in the sand and resisting all change.

Others attempt to solve the wrong problem by only trying to

improve traditional methods. If we are trying to actually

improve productivity, we must look for new and innovative

ways to solve problems. In this regard, automation should

be used to the maximum extent possible. [Ref. 2: pp. 11-14]

8. Government Laws, Regulations, Policy and Traditions

Another class of problems exists for ADP

organizations in the government. The laws and regulations

developed when computers (hardware) were extremely expensive

are still on the books today. The primary bill governing

acquisition of computer equipment is the Brooks Act (Public

Law 89-306). The effect of the Brooks Act has been to

create layers of administrative actions required to justify

and procure new hardware. With the incredible improvement

in the cost/performance ratio of computers, legislation of

this nature represents a double barrier to productivity.

Not only does it tie up manpower preparing and staffing the

necessary documentation to justify the procurement, but the

benefits of the new technology or methodology are foregone.

In addition, the government is not able to take advantage of

the bargains available due to the current economic slump.

13

- ,

Certain government policies can be

counter-productive. A striking example of this is

Department of Defense (DOD) Directive 5000.29, entitled

"Management of Computer Resources in Major Defense Systems."

It requires the use of a DOD-approved higher order language

in defense systems unless it can be proven that another

language would be more cost effective for a specific

application.1 The intent was to stem the tide of language

proliferation. [Ref. 5: p. 15] What it did, however, was

close the door on fourth generation languages which were in

their infancy at the time (1976).

Current civilian personnel office (CPO) policies do

not normally allow technician positions in the grade of

GS-13 and above. Those are strictly for management

positions. This promotes the Peter Principle. Some

technicians are promoted who really do not want to be

managers or lack the requisite skills. Others stay in their

GS-12 positions but develop morale problems which lead to

decreased efficiency and productivity. For those

technicians who leave for private industry, it means the

government incurs increased recruitment costs, increased

training costs, loss of institutional knowledge, learning

curve productivity losses, and personnel vacancies.

Computer technology is complex and changing so rapidly that

skilled technicians at senior levels are not a luxury but a

necessity.

Recent budget cutting schemes have not helped

recruiting or retention. Announcing a potential five

percent wage reduction for fiscal year 1986 degraded morale

of those in the work force. For those considering work in

'DOD Directive 5000.31 rovides the actual interim list
of approved languages. Both directives were issued in 1976,
before the advent of true fourth generation languaes.

14

........

the public sector, wage reductions add one more strike

against government employment.

The work environment for governmental agencies is

often austere. For many software development agencies, the

work space is cramped and there are too few conference rooms

for meetings and walkthroughs. Additionally, the programmer

to terminal ratio is poor, and the programmers complain of

poor computer response time. Software development tools, if

available, are dated and the programmers lack training in

how to tap their full potential.

B. THESIS ORGANIZATION AND OBJECTIVES

The introduction has provided background information on

software development problems which are applicable to nearly

all governmental and private organizations. It will serve

as a framework from which to discuss problems and specific

productivity issues at ISEC. The U.S. Army Information

Systems Engineering Command faces significant challenges in

the near and distant future. To meet their mission

requirements, internal goals, and objectives, they must

improve productivity.

Chapter two provides an organizational overview of ISEC

and its role in information resource management in the Army.

The chapter will discuss Army MIS and the role of each major

player in the process. It will conclude by discussing

specific productivity problems at ISEC.

Chapter three looks at productivity measurement.

Several methods for measuring productivity will be

discussed. Some metrics are needed to determine whether

productivity is increasing, decreasing or unchanged.

Productivity measurement in the software field is neither

free nor easy. The productivity yardsticks chosen must be

carefully selected to avoid influencing employee behavior

15

...........................-.. JI... -- 7' .. .

that would have a negative impact to the organization as a

whole.

Chapter four will discuss the traditional software life

cycle and the inherent problems associated with developing

software using that methodology. The role of requirements

definition is absolutely critical for developing software

that meets users needs in a timely fashion. For reasons we

will discuss in chapter three, the most expensive problems

in developing software have historically been in the

requirements definition phase. An alternate life cycle

using prototyping is proposed. Prototyping is a departure

from the traditional software life cycle. The advantages

and limitations of prototyping will be addressed as well as

management implications and issues involved in adopting such

a life cycle.

In chapter five, we will explore the software

development environment which includes software tools,

techniques, and the technologies employed developing the

software. The need for an integrated software tool set to

support software development and maintenance will be

established. This chapter will also discuss human factors

and how they relate to productiviLy. The human factors

considered will include motivation, awards and incentives,

employee training, working conditions, and computer

response time.

Chapter six is concerned with software management. We

will discuss project planning and project management,

resource estimation, contract management, and some general

management issues. A formal productivity improvement

program is suggested.

The final chapter will present conclusions reached

during this study and summarize recommendations for

improving productivity. It will also recommend areas that

require further study.

16

*.........

II. SOFTWARE DEVELOPMENT AT ISEC

A. ARMY INFORMATION MANAGEMENT AND ISEC

1. Recent Historical Background

In 1984, a major reorganization in the Army

hierarchy occurred which will have profound strategic

implications in the years to follow.

On May 9 1984, General John A. Wickham Jr., chief of
staff of the Army, took the first steps to improve
information management. He approved the establishment
of the information mission area (IMA). This decision
brought together and integrated the subfunctions of IMA
- telecommunications, automation to include office
automation, audiovisual, recQrds management and
publications. LRef. 6: pp. 30-33]

Among the changes in the Army's organization included the

addition of a fifth arm of the Department of the Army (DA)

general staff, the Assistant Chief of Staff, Information

Management (ACSIM). The mission of ACSIM is:

to improve the management quality and flow of
information as a principal resource in achieving total
Army goals, by fully integrating all information
functions, including information resource management,
ommunications, administration and command and control.[Ref. 7: p. 4]

Another change resulting from General Wickham's IMA

guidance was the establishment of the U.S. Army Information

Systems Command (USAISC). USAISC operates and maintains

assigned information systems in the area of

telecommunications, automation, office automation, and

audiovisual [Ref. 8: p. 35]. USAISC was created from assets

of the U.S. Army Communications Command (USACC), the U.S.

Army Computer Systems Command (CSC) and several other

smaller units.

17

The 1984 reorganization also created the Information

Systems Software Support Command (ISSSC), the forerunner to

ISEC. It was formed from the remaining assets of the

Computer Systems Command and placed under the leadership of

USAISC. In June 1985, ISEC was formed by merging the assets

of the ISSSC and U.S. Army Information Systems Software

Support Command (ISSSC) and the U.S. Army Electronics System

Engineering and Installation Command (AESEIC). AESEIC was

stationed at Fort Huachuca, Arizona, and most of its

functions and employees will remain there but under the

auspices of ISEC. Despite the name change and merger, ISEC

remains a subordinate unit of USAISC today.

2. Introduction to ISEC

The U.S. Army Information Systems Engineering

Command (ISEC) is a key organization in the Army's effort to

manage its vast information resources. ISEC has

responsibility for the technical aspects involved in

developing, designing, testing, implementing and maintaining

the Army's Standard Army Multi-command Management

Information Systems (STAMMIS).

The command is headquartered at Fort Belvoir,

Virginia, about 12 miles south of Washington D.C. Several

hundred employees work in nearby Falls Church, Virginia

while a major programming directorate is located at Fort

Lee, Virginia. In addition, ISEC has operational units

located around the globe with support teams in Hawaii,

Germany, and Korea. More than 1500 hundred ISEC employees

(former AESEIC employees) work at Fort Huachuca, Arizona,

but their primary duties are not STAMMIS related.

A considerable portion of ISEC resources are

involved in STAMMIS development and maintenance. Their

other missions include but are not limited to:

18

=.

t.

1. Managing the Army Information Processing Standards

(AIPS) program;

2. Providing technical support to all Army echelons;

3. Conducting software research;

4. Developing software standards;

5. Serving as a developer and evaluator of systems

software and executive software; and

6. Monitoring hardware development.

The size and responsibilities placed on ISEC are

impressive. It is responsible for information systems

design, development, installation and test to include

hardware, software, and systems integration. [Ref. 9: p.

38] ISEC employs well over 4000 workers most of whom are

civilians. It is comparable in size to major software

houses and computer companies. Approximately 1000 employees

are in programmer or analyst positions supporting STAMMIS.

3. The Evolution of Arm Information Management

During the past 20 years, the Army has modified its

information structure several times. As the Army's

information needs evolved and computer-based information

systems technology advanced, the Army's philosophy for

managing information has also evolved. The IMA

reorganization demonstrates a commitment by the Army to

treat information as one of its most precious resources.

The consolidation and integration of information functions

under one manager makes sense because of the

interrelationships between them.

Richard Nolan wrote a landmark article in the

Harvard Business Review (1979) on the stages of evolutionary

growth that organizations experience with data processing.

Nolan describes how organizations move through rather

distinct stages from stage 1 (initiation) through stage 6

19

K TABLE I

STAGES OF DP GROWTH -NOLAN

STAGE 1: INITIATION

*Development of low level operational systems in
a functional area

*No overall planning or control

STAGE 2: CONTAGION
*Growing demand for and proliferation of applications

*Innovation encouraged

*Applications developed in isolation

*Low level of planning and control

*Managers cannot obtain information for decision
making

*Proliferation of incompatible and redundant data

STAGE 3: CONTROL
*Planning and control become formalized

*Shift occurs in management orientation from
management 9f computers to management of
the company s data resources

*Users arbitrarily held accountable for the cost
of data processing; Users become frustrated

STAGE 4: INTEGRATION
*Existing applications retrofited into data bases

*Increased demand by users

*Redundancy of data

STAGE 5: DATA ADMINISTRATION

*Organization wide strategic planning

*IRII emphasized

*Tailored planning and control systems

STAGE 6: MATURITY
*Applications portfolio is completed

*Structure mirrors the enterprise and the information
flow in the company

*Information Engineering is largely completed

20

(maturity).2 [Ref. 10: pp. 115-126] These stages differ in

the kinds of applications being developed, the control over

the information system function, and by the degree of

planning involved for future applications. [Ref. 11: pp.

269-72] Table I is a summary of Nolan's six stage model. It

is normal for an enterprise to reorganize (such as the

Army's evolution) as it attempts to control and make full

use of its information resources.

Where does the Army fit in Nolan's Model? Although

the boundaries are somewhat ill-defined, the Army is

somewhere between stages 3 and 5. Strategic planning and

Information Resource Management (IRM) are being

emphasisized, thus, one could argue that the Army is

beginning data administration (stage 5). On the other hand,

a strong case could be made that the Army has never left

stage 3. Users are frustrated with the applications backlog

and management has frequent difficulty obtaining the

information they desire for decision making. Additionally,

the Army has not retrofited existing applications into data

bases.

B. THE STAMMIS DEVELOPERS

There are three main participants involved in the

development of STAMMIS: the functional proponent (FP),

ISEC, and the user. The functional proponent is normally a

Department of the Army (DA) staff element such as Deputy

Chief of Staff, Personnel (DCSPER). The FP is responsible

for the functional software specifications of a particular

STAMMIS. They also assist with functional aspects

concerning STAMMIS design, development and testing. ISEC is

2This is a refinement of an earlier article by Gibson,
Cyrus F., and Nolan, Richard L., Managing the Four Stages
0 EDP Growth, Harvard Business Review, v. 52,
January--February 1974, pp. 66-76.

21

responsible for the technical specification, design,

development, coding, configuration management,testing,

implementation, and maintenance of the STAMMIS. ISEC is

known as the application system developer (ASD) for STAMMIS

Software. [Ref. 12: p. A-l]

The Army's STAMMIS or management information systems

(MIS) can be divided into three main functional areas. They

are shown in figure 2.1 along with the functional proponent

and examples of each. Each functional area is serviced by a

separate ASD within ISEC. In total, ISEC has developed and

supports over 60 different MIS.

The sum of all the programs that comprise the more than

60 STAMMIS are on the order of 15-20 million lines of code.

This library has been in development for about 20 years. If

industrial yardsticks apply, ISEC has spent between one and

two billion dollars developing and maintaining this code.

[Ref. 13: p. 1]

Functional Area/Example Functional Proponent

1. Financial Systems Comptroller of
STANFINS the Army (COA)
STARCIPS

2. Logistical Systems DCSLOG
SAILS
SARSS
ULLS

3. Personnel and Force
Accounting Systems DCSPER

SIDPERS
VFDMIS
VTAADS

Figure 2.1 STAMMIS Functional Areas, Examples and Proponents.

22

C. BASIC PROBLEMS AT ISEC

1. Preface

It is the opinion of the author that Information

Systems Engineering Command is well managed. Employee

morale is favorable. ISEC has a sound training program.

They are fortunate to have a commander who is technically

qualified and understands the issues and problems in systems

development and integration. However, in the software

development business, the challenges are formidable, varied,

and many.

The problems that beset ISEC occur in most other

information systems departments or software development

organizations. Chapter one considered generic software

development problems - all are evident to some degree at

ISEC. There are additional factors bearing on the software

development efforts at ISEC. They are discussed in the

following subsections. Although the role of information is

changing in the eyes of Army leadership, there are many

obstacles to overcome before achieving Army goals for

information resource management.

2. Specification Problems

As mentioned earlier, the key to quality software is

capturing accurate and complete specifications. For STAMMIS

software, the functional proponent is responsible for the

functional specifications. In the unlikely event that the

FP knew exactly what it wanted, they often lack the training

to write clear, complete specifications. The geographical

distance between the STAMMIS key players slows coordination,

fosters cultural differences, and increases

misunderstandings and development time. In addition, the

end user has historically been only marginally involved in

the specification process.

23

. ~ ~ ~ ~ ~ ~ ~ ~ - -7%..,7- ~ * ~ *.**

STAMMIS have been fielded which did not meet

customer needs, were not used, or were difficult to use.

There are, indeed, recent examples of just this happening.

In 1985, a STAMMIS was developed for the military police

(named MPMIS) after considerable pressure was applied by the

FP to meet specific deadlines. An audit followup was

conducted four months after the system was fielded. The

findings revealed that virtually no one was using the MPMIS.

[Ref. 14] This has frustrated all parties involved, has had

a negative effect on peoples' perceptions of ISEC and

dampened ISEC employee morale.

3. Political Conflicts

The FP sometimes makes arbitrary decisions when

requesting engineering change packages (ECPs) without

consulting ISEC for a resource and time estimates. Because

STAMMIS are file processing systems (vice data base

processing systems), it is not uncommon for an apparent

small change to actually be a time consuming venture. This

is due to the ripple effect the change has on other portions

of the program or system. This has caused further

alienation for two reasons. First, it frustrates the

programmers who are forced to work overtime to meet

arbitrary deadlines. Second, if a deadline should be

threatened, the FP is angry for what seems like the

incompetence of ISEC to handle the smallest of changes.

4. Lack of Skilled Professionals

ISEC has a difficult time competing for computer

programmers and analysts in the Washington D.C. area. They

rarely are able to hire college graduates, much less,

computer science graduates. Employees at ISEC give two

primary reasons for this: (1) the government does not pay

competitive wages to attract these people, and (2) lack of

24

aggressive recruitment by the servicing CPO. There is

evidence in the literature to support the claim that

government wages may be lagging behind that of the private

sector in the Washington D.C. area. [Ref. 15: pp. 58-69] It

should be noted that compensation packages are frequently

bundled quite differently making direct comparison of wages

dangerous, at best. [Ref. 16: pp. 27-38]

ISEC is forced to "grow their own" and they do just

that through an intern training program. Frequently, after

their obligation to the government is completed, they leave

for better paying jobs in the private sector. Some are

hired by software houses or businesses that do contracting

work for the Army. These firms pay them a few thousand

dollars more which eventually gets charged back to the Army

along with a standard overhead markup of 100-150 per cent.

5. Personnel Reductions

The Army is undergoing the process of fielding four

active duty light infantry divisions from internal assets to

meet worldwide threat scenarios. Despite this buildup, Army

leadership (perhaps for good reason) chose not to request an

increase to the Army's end-strength from Congress.

Organizations such as ISEC are frequently called on to be

the "bill payers" for manning such units. The result is

that ISEC is asked to do more with less. Several managers

interviewed expressed concern over these reductions. They

survive through a positive "can do" approach to their work.

But at some point, if it has not already been reached,

ISEC's ability to meet mission requirements will be

threatened.

6. Contract Management Problems

Manpower reductions coupled with the low experience

level of the programmers and the demands placed on ISEC by

25

..

the functional proponents has created a sizeable backlog of

projects. It has forced management to contract out for many

projects. This, in and of itself, may not be bad. There

are those who argue that the provisions of Office of

Management and Budget (OMB) Circular A-76 mandate more

STAMMIS work being contracted out. The problem with this,

however, is that ISEC has not exhibited the expertise to

properly write and manage such contracts.

The Vertical Force Development Management

Information System (VFDMIS) contract is a classic "how not

to do things" and "if something can go wrong, it will."

VFDMIS is a complex STAMMIS expected to be in the

neighborhood of one million lines of code (LOC) - no small

venture for the finest of software developers. Work on

VFDMIS began in 1974. The contract was let to a small

business contractor, ASG, despite the knowledge that VFDMIS

was to be the largest and arguably the most complex MIS in

the Army. The contractor originally lacked the necessary

expertise for the project and was hampered by tremendous

personnel turnover. In short, VFDMIS has suffered of a

history of disappointments, technical difficulties, and

problems.

Incredible as it may seem, there have been no

deliverables presented to ISEC at the end of any contract

year. If the contract was cancelled tomorrow, the Army

would have little to show for this 11 year, multi-million

dollar fiasco. It doesn't appear likely that the Army will

have an operational system for at least a few more years.

Coding on the system has only recently begun. [Ref. 17] The

chances appear good that the Army will field another

obsolete system with obsolete technology.

26

7. Lack of Standardization

ISEC is required to develop and maintain several

versions of a STAMMIS. This is caused by multiple

environments in which the software must run. If the Army

could agree on a standard operating system such as Multiple

Virtual System (MVS), an IBM operating system, the potential

long-xrun savings would be significant. There would be some

initial hardware and training costs involved. Some field

commanders may not wish to accept the short-run productivity

loss that such a change would entail. Further, by

standardizing the operating system to MVS, it may stimulate

complaints about locking yourself into only a handful of

vendors. This is a difficult issue, however, and one that

ISEC is exploring.

8. Organizational Turbulence

The initial section of this chapter described ISEC's

two major reorganizations in the past 12 months. These

changes exact a toll on the productivity of the employees

which is difficult to precisely gauge. Adjusting to new

relationships and incurring new responsibilities are a part

of this transition process. These organizational changes

should be of long-run benefit to the Army but there is large

payment required today in terms of short-term productivity

losses.

9. File Processing Shortcomings

Traditionally, STAIINIS are "stovepipe file

processing systems"1 that are application specific along

functional lines. Current STAMMIS fail to take advantage of

data base technology. The advantages of data base

processing are well known; Table II is a summary those

advantages. These advantages may not be fully experienced

27

in every system. In fact, there are shortcomings of data

base processing. Among them are: (1) DBMS systems are

expensive; (2) they are complex; (3) backup and recovery are

more difficult; and (4) there is an increased vulnerability

for failure. [Ref. 18: pp. 1-7]

TABLE II

ADVANTAGES OF DATA BASE PROCESSING

o More information can be obtained from the same
amount of data.

* New requests and one-of-a-kind requests are more
easily implemented.

* Reduction of data duplication resulting in fewer
cases of conflicting reports.

* Program/data independence is achieved thus the
data is compatible for other programs.

a Data management is facilitated.

* DBMS generally allow more affordable
sophisticated programming.

ISEC has several forward-thinking employees who

realize the benefits of data base processing. ISEC have

sent a formal request to USAISC to establish a STAMMIS

corporate data base [Ref. 19]. USAISC believes the idea has

merit but wants ISEC to tie their efforts to the Army

corporate data base, an ACSIM initiative [Ref. 20]. This is

probably a reasonable idea but because of the lead times

involved in designing these systems, it means the current

STAMMIS will continue to be file processing systems for

several years.

28

-.- ... ;.-.-.. ...-.....-. ,

D. CONCLUSION

The pitfalls to software development are staggering but

not unsolvable. In this regard, there are four basic

approaches to improving productivity at ISEC. These

involve:

1. Improving the techniques and methodologies employed

developing the STAMMIS (Chapter 4);

2. Utilizing the benefits of technology to develop the

system more effectively and efficiently (Chapter 5);

3. Creating a positive work environment for the

employees at ISEC (Chapter 5); and

4. Improving the Management of STAMMIS (Chapter 6).

The next chapter defines productivity and explains produc-

tivity measurement in general. It discusses specific

productivity measurements for software development and main-

tenance. It also discusses implementing a performance meas-

urement system at ISEC. The remaining chapters discuss the

four basic approaches mentioned above to provide suggestions

for improving productivity while simultaneously improving

(or at least maintaining) the overall quality of the

STAMMIS.

29

..-- .o. -...-

.. . . .

III. PRODUCTIVITY MEASUREMENT AND IMPROVEMENT

A. INTRODUCTION

1. Overview

Productivity is a favorite buzzword of the 1980s.

Data processing literature is laced with articles on

different aspects of the subject. The acute programmer

shortage and the great demand for software products have

made productivity an especially critical issue in software

development. Published goals at ISEC state "Foster

Productivity" as a principal organizational objective. What

is productivity? How do you foster productivity? These

questions and related issues are discussed in this chapter.

2. What Productivity is Not

Productivity is often confused with production. it

does not necessarily follow that the greater the production,

the greater the productivity. Surprisingly, a 1972 Louis

Harris poll revealed that 27 percent of executives

interviewed held this erroneous view. In addition, one

third of all college educated and professional respondents

were likewise ill-informed. [Ref. 21: p. 41] The following

description should help clarify the distinction between the

two:

Production is concerned with the activity of producing
goods and-tor services.

Productivity is concerned with the efficient utilization
of resourfces (inputs) inpodcngosadorevis
(outputs). [Ref. 22: p. 4]dcn gosadorsrie

30

There is also confusion between the related concepts

of efficiency, effectiveness, and productivity.

Effectiveness reflects how well a result met its objectives;

efficiency reflects how well the resources are utilized to

accomplish the results. Thus productivity is really a

combination of both effectiveness and efficiency since

effectiveness is related to performance while efficiency is

related to resource utilization. [Ref. 22: p. 6]

3. Productivity and Software Development/Maintenance

We have talked about productivity throughout this

paper but have yet to define it. Alvin Toffler, author of

The Third Wave, discusses the problems of defining

productivity:

The first problem is the definition of productivity. It
is one of the spongiest, and one of the most treacherous
of economic concepts. It was designed for a world of
material production, when you could count how many
workers and how many hours it took to turn out how m~ny
skirts or copper bars. As we have moved to what I ve
been calling a Third Wave economy, more and more of our
output consists of informatin, services, experience.
More and more the consumers own actions aftect the
efficiency of the producer. In addition, we have begun
to appreciate that economic productivity is frequently
more an artifact of accounting and of permissible
externalization than of anything else. So I have
t remendous prob ems with the very term "productivity.
LRef. 23: p. 14]

Perhaps turning to the dictionary will serve as a starting

point. Webster's Third New International Dictionary defines

productivity as:

a) The physical output per unit of production effort;

b) The degree of effectiveness of industrial management

in utilizing the facilities of production; especially

the effectiveness in utilizing labor and equipment.

Dr Irving Siegel, author of Company Productivity, defines

productivity as:

31

.

. -.- .-.... . .4.-. - .

a family of ratios f quantity of output to quantity ofinput [Ref. 21: p. 21.

How is productivity defined for software development

and maintenance? One expert defines it as follows:

Programmer productivity is generally defined as the
quantity of work produced by an individual programmer in
a unit of time. . The definition implies the speed of
programming, including the related tasks such as program
design, coding testing and documentation. The
definition can 5e modifiea to use an expense or cost
unit instead of a work unit. In addition, the
definition should be extended to include program quality
measurements. LRef. 24: p. 18]

The following section will discuss programmer productivity

in some detail with the emphasis on measurement aspects.

B. MEASUREMENT FOR IMPROVEMENT

1. Why We Should Measure Productivity

Capers Jones, author of several articles on

programmer productivity and measurement, noted that

preceding all the great advances in science in the 19th and

20th century were earlier advances in measurement

instruments and measurement techniques. [Ref. 25: p. 39]

Many authors speak of the evolution of software development

from an art to a science. But are we there yet? Lord

Kelvin's often quoted passage is appropriate here.

When you can measure what you are speaking about, and
express it in numbers, you know something about it; but
when you can not measure it, when you cannot express it
in numbers, your knowledge is of a meager and
unsatisfying kind: it may be the beginning of
knowledge, but you have scarcely in your tho ghts,
advancea to the stage of science. [Ref. 2 : p. 16]

Perhaps we are not there yet but we are making

progress. One thing is certain - unless we have systematic

32

-... ° ° .° .. .-................ °,. . ..- °.°, •, -...

methods to measure productivity, it will remain simply a

buzzword with little or no real meaning. ISEC has done

little to measure productivity as an organization. This

makes it extremely difficult to gauge progress towards

ISEC's goal "Foster Productivity."

We measure productivity in the software development

and maintenance process primarily for management purposes.

Productivity measurement provides information for planning,

controlling and evaluating the entire process as well as the

individual projects within the process. For planning, it

provides management with information useful to estimate

resource requirements. For control, planned resource

estimates can be compared against actual expenditures.

Variances can be analyzed and appropriate action can be

taken to correct deficiencies. For evaluation, measurement

systems provide valuable feedback on individual works,

projects and the organization as a whole. [Ref. 27: pp.

33-35]

Most authors agree there are many potential benefits

which accrue by measuring productivity. The benefits

reflect a positive view of the purposes of productivity

measurement. Table III summarizes the major benefits.

Lowell Arthur, author of Programmer Productivity, is

a strong believer in measuring productivity for software

development. Arthur contends that:

One of the keys to improving productivity and quality is
the ability to measure them. Software metrics provide a

* ~ardstick of system quality and project productivity.
can'out quantitat ive and qualitative measurement, you

cant tll f ourdevlopngsystem is a lemon or a
well-oiled machine. Furthermore, when it is operational
you won t be able to tell what Wpakes it a lemon or such
an engineerinR marvel. You won t know where or what to
fix or how o recreate the excellence of a previous
system. You 11 be no better off than bli~nd men trying
to describe an elephant. [Ref. 28: p. 125]

33

TABLE III

POTENTIAL BENEFITS OF MEASURING PRODUCTIVITY

ORGANIZATION

* It helps determine if the organization is getting
its money s worth.

" It can improve the internal company climate.

MANAGEMENT

* Data collected can help estimate programming

resources for scheduling a project.

* It facilitates management control.

o It can help indicate potentially high-cost, main-
tenance prone programs during t e development.

o It can serve as a mechanism to help appraise and
possibly reward employees.

PROGRAMMER

e It provides feedback on performance to employees.

o It can serve to motivate employees to higher
performance levels.

2. Units of Measurement

a. Overview

There are two basic units of measurement, work

units and cost units. Work units measure things like speed

of programming; an example of which is lines of code (LOC)

per man-month. Work units can be deceiving. They must be

carefully defined and used cautiously to ensure

comparability. An example of a cost unit is programmer-days

per 1000 LOC. Because of inflation, cost units are not

always stable. It is often advisable to use standard

34

7,c- .

dollars fixed to some base year instead of actual dollars to

facilitate comparison when using cost units. [Ref. 24: pp.

18-19]

There are three basic types of productivity

measures: partial factor productivity, total factor

productivity, and total productivity. Partial factor

productivity is the ratio of output to one class of input.

Total factor productivity is the ratio of net output (total

output minus intermediate goods and services purchased) to

the sum of the associated labor and capital (factor) inputs.

Total productivity is the ratio of total output (not net

output) to the sum of all input factors. [Ref. 22: p. 7]

Management should be aware of some of the

potential advantages and limitations of each type of

measurement. Table IV and Table V provides a short summary

of the advantages and limitations, respectively, to help in

this regard. [Ref. 22: pp. 7-10]

b. General Problems with Measuring Productivity

There are several problems involved in the use

of productivity measures. These center around the

measurement of inputs and outputs and their abilities to

measure efficiency. What is measured depends on the purpose

(e.g. management intent) and use of the measurement. If

management is interested in efficiency, when measuring

inputs for use in a productivity measure, it is desirable to

ensure that only the inputs that are actually utilized in

the production process are used in the measure. This is

especially important for the labor inputs. It implies, for

example, that only time worked should be utilized in the

measure instead of time paid. Although time paid is of

interest for total cost purposes, elements such as

administrative time should be separated out. Most

35

TABLE IV

ADVANTAGES OF THE 3 BASIC TYPES OF PRODUCTIVITY
MEASURES

PARTIAL PRODUCTIVITY MEASURES

• They are easy to understand.

& Data is easy to obtain.

* Productivity indices are easy to compute.

* They are easy to sell to management because of
the above 3 advantages.

e Some partial productivity indicator data is
available industry-wide.

* They are good diagnostic tools to pinpoint areas
for productivity improvement, if used along with
productivity measures.

TOTAL FACTOR PRODUCTIVITY MEASURES

e The data from company records are relatively easy
to obtain.

* They 4re usually appealing from a corporate econ-
omist s view.

TOTAL PRODUCTIVITY MEASURES

* A more accurate representation of the real
economic picture of an organization is obtainable
because they consider all the quantifyable output
and input factors.

• If used with partial measures, they can direct
management attention in an effective manner.

o Sensitivity analysis is easier to perform.

* They can be easily related to total costs.

organizations will probably want to track both time worked

and time paid, however, as a pure efficiency measure, time

worked is preferable. This separation will allow management

to focus their efforts more appropriately. Care must be

36

TABLE V

LIMITATIONS OF THE 3 BASIC TYPES OF PRODUCTIVITY
MEASURES

PARTIAL PRODUCTIVITY MEASURES

* If used alone, they can be very misleading and
may lead to.costly mistakes.

* They do not have the ability to explain overall
cost increases.

e They tend to shift the blame to the wrong areas
of management control.

TOTAL FACTOR PRODUCTIVITY MEASURES

* When material costs form a sizable portion of

total product costs, they are not appropriate.

* Only labor and capital inputs are considered.

* Data for comparison purposes is relatively diffi-
cult to obtain.

TOTAL PRODUCTIVITY MEASURES

* Data for computations are relatively difficult to
obtain at the product and customer levels, unless
data collection systems are designed for this
purpose.

& As with the partial and total factor measures, it
does not consider the intangible factors of
output and input in a direct sense.

taken in the aggregation of inputs. Using labor as an

example, different skills such as key punch operator versus

a systems analyst, perform entirely different tasks. As

such, their inputs should only be aggregated when they occur

within a particular department. Where possible, it is

preferable to measure inputs in terms of physical units

rather than value units. [Ref. 27: pp. 37-38]

37

: : , . •. .:. -, .: . : . - -

Exactly what should be measured can, indeed, be

a problem. Convenient output measures are not always

available in public sector organizations that provide a

service where no acceptable definition of their outputs

exist (e.g. national defense). In these organizations, most

of the output measures in use are actually inputs to further

processes - many are weak at best. In cases where inputs

and outputs cannot be precisely measured, productivity

measures become susceptible to manipulation and gaming.

This implies that the control and evaluation phases of

management may focus on faulty indicators. [Ref. 27: pp.

38-39]

Another related problem exists concerning how to

deal with the quality of inputs. Idealy, to equitably

compare various output levels, quality should be held

constant. In reality, quality is rarely constant. In

addition, quality changes are often difficult to measure.

[Ref. 27: p. 39]

Dr. Barry Boehm cites a Weinberg study which

found that programmers will tend to maximize (or minimize)

whatever is being measured. Five different programming

teams were given the same assignment but were given

different directions about what to optimize while doing the

job (e.g. minimize the number of statements or minimize the

amount of memory required by the program). Four of the five

teams finished first with respect to the objective they were

asked to modify; the other team finished second. None of

the teams performed consistently well on all objectives.

The conclusion to be drawn from Weinberg's experiment is

that management must carefully define the objectives for

their programmers taking into consideration the conflicting

nature of goals - programmers will .ry to otimize whatever

is being measured. [Ref. 29: pp. 20-21]

38

.J

A related problem is that programmers have been

known to "pad" their output in effort to look better. There

are many ways to do this. If lines of code per man-month is

a critical management measure, programmers will tend to

write programs that are longer than necessary without regard

to machine efficiency. Programmers may even include

duplicate loops or use other methods soley to increase their

lines of code. Thus, we must always be aware that

productivity measures are often susceptible to gaming. This

is another reason why management must be very careful

chosing: (1) what they measure; (2) why they measure it;

(3) how they measure it; and especially (4) what management

does with the results of the measurement.

In addition to the anomalies above, a few final

words of caution and guidelines about productivity

measurement are condensed below from various articles. The

articles warn that:

1. Taking a measurement changes the system being

measured (The Hawthorne Effect);

2. Comparison of results may be meaningless;

3. Results are sometimes paradoxical and misleading;

4. No single measurement tells the whole story;

5. Each measurement has its pros and cons;

6. Measuring productivity is not free; and

7. All measures are relative.

c. Measuring Programmer Productivity and Quality

(1) Preface. Keeping in mind the above

discussion of productivity measures in general, we can now

begin to discuss the measurement of programmer/project

productivity. The difficulties of measurement are best

verbalized by people who have actually struggled with the

issue. Trevor Crossman complains:

39

. - . .i .. 'i ' --. ,. .1.':i~i , .-- -: --.-. ... , . "--:..,.. .- -. ,i.' . ."

Programmer productivity is a dilemma. On the one hand
we want to control projects by knowing exactly when anA
where all slippages occur, we want to know if using a
new methodology really is beneficia. We despise
estimates that are based on "gut feel but it appears
that if we are to measure the productivity ot our
programmers we have to identify project variables and
calculate their influence on our programming staff, make
subjective assessments of the envisaged complexity of
programs and the predicted ability of programmers
clarify terminology that has no indus ry-accepte
definitions, measure the quality of our programmers
work, and base programmers performances on pro ect
estimates (which. are arrived at unscientifically,
anyway).
tOma be easier to say it just cannot be done.

[Ref. 30: p. 144]

Crossman's comments demonstrate some of management's

frustrations concerning productivity measurement. Some

progress has been made though; many metrics have been

proposed, tested, and found useful. These include

measuring: (1) lines of code (LOC) per some labor unit; (2)

functions which the user performs when utilizing the

program; (3) functions which the program performs; (4)

completed projects; and (5) quality and complexity. We will

explore these major methods in the rest of this section.

Clearly, many variations of these techniques exist.

(2) Lines of Code. Traditionally, software

development organizations measured LOC per some unit of

labor such as man-days or man-months. Many authors have

suggested several problems with this general approach,

however. Table VI is a summary of the shortcomings of LOC

as a productivity measure.

Based on the strong objections to using

LOC per labor unit as a productivity measure, one might

conclude that it is useless. This is not so. Many

companies, such as IBM, still use it as a management tool to

gauge productivity despite its inherent shortcomings. Why?

One major reason is that it is easy to measure. In fact, in

many cases, the process can be automated. But because some

40

,.........-................-...-... ,........-.-
, " ' " • " it • t ,i . . - . . ,. *.: ..- . . ._ ,_" " " - r -... . ._**.,'. *b

TABLE VI

PROBLEMS WITH LINES OF CODE AS A PRODUCTIVITY MEASURE

* There is no standard definition of LOC.

* LOC measurement is subject to gaming.

* LOC focuses attention on coding which is only
10-20% of the total software process.

• Comparisons across programming languages and
companies are meaningless.

• Higher level languages are penalized.

* LOC does not address quality.

measure is easy to obtain is no reason, in and of itself, to

use the measure. The critical question is "what is

management's intent for use of the measure?"

Arthur recommends measuring executable

lines of code (ELOC) to avoid the problem of lack of

standardized definition of LOC. For organizations such as

ISEC that program almost exclusively in COBOL, measuring

ELOC amounts to counting only COBOL's verbs - statements

that do something. Arthur provides a program in Appendix C

of his book Programmer Productivity which automates the

measurement process. Arthur contends that:

ELOC provides the only valid measure of coding
productivity currently available [Ref. 28: p. 133].

He freely admits, however, that ELOC suffers many of the

same limitations as LOC. Yet management awareness and

prudent judgement can overcome most of the limitations.

[Ref. 28: pp. 132-135]

41

........................

(3) Program Functions. Crossman, while

working at the Standard Bank of South Africa, proposed and

tested a productivity measure based on the number of

functions within a program. He divided the number of

man-hours spent during system development3 by the sum of all

programs in the system. [Ref. 30: pp. 144-5] Note that this

really represents an inverse productivity measure. As in

the case of LOC, program functions measure an input into the

software development process instead of an output.

Precisely defining exactly what a function

is may be a problem partly because Crossman's research

involved only highly structured programs. In his article,

"Taking The Measure of Programmer Productivity", he defines

functions as:

that section of the program that performs only one
activity, such as initializing fields, computing values,
setting up a print line validating a record etc.; has
only one entry point and one exit point; conforms to the
permited logic structure of structured programs; and has
about 5-50 source statements [Ref. 30: p. 145].

The only factor that significantly

affected the time to develop an application was the number

of functions within a program. Crossman determined that he

could disregard all other project variables for estimating

the development time except for the use of "breakthrough

technology" (e.g. new data base technology or a new

operating system). In those cases where new technology was

employed, the development time doubled indicating a steep

learning curve adapting to new technology. The management

implication is that program functions may be a useful

planning and resource estimating tool. On the other hand,

'Crossman defines development time as design, code,
inspection and unit test but excludes system test which he
feel s rarely is a development time/cost driver.

42

p.

program functions suffer many of the same limitations as

other methods. [Ref. 30: pp. 145-147]

(4) External Attribute Functions. Allan J.

Albrect, working at IBM's DP Services Organization,

pioneered another approach to the programmer productivity

measurement dilemma. Albrect proposed a measure based upon

the external attributes or functions that a software product

involved. The general approach is to count the following

features in an application: (1) user inputs; (2) external

inquiries; (3) external outputs; (4) master files; and (5)

system-to-system interfaces. [Ref. 31: p. 102]

The subtotals of the individual five

factors are weighted (by trial and error) by numbers

designed to reflect the function value to the user. The

weighted totals are then added. Additional adjustments can

be made to account for a particular project's quirks. For

example, if an application is particularly complex, the

total can be increased by some percentage. The result is a

dimensionless number defined in "function points" which

Albrect has found to be an effective relative measure of

function value. The actual measure used is hours worked per

function count, another inverse productivity measure.

Albrect asserts that function value is

programming language and technology independent. The

measure of external attribute functions offers the

considerable advantage of actually attempting to measure the

results of the entire software process. In this respect, it

corresponds more closely to a true productivity measure. It

is also less subject to gaming than other methods. One

author points out:

What is significant is that function points do not
contradict what would have been speculated, lending
credibility to this concept of measurement. Without
this credibility, future producti ity assessments would
not be possible. [Ref. 31: p. 108]

43

.

Another author counters with:

The disadvantage of function points is that they are
imprecise and often misunderstood. Many people perceive
a function point figure to represent function delivered
to the user. In fact, it represents the amount of
function imbedded in the s ecific design of the system;
much of the imbedded function may be invisible or not
utilized by the user. Indeed, different designs meeting
the same requirements may have widely different function
point counts. LRef. 32: pp. 134-135]

(5) Completed Projects. Another possible

measure is completed projects per unit of labor. The

definition of project would need clarification but the

method does appear easy to implement and use. To make it a

viable measure, managers would have to ensure that employees

were given projects of equal difficulty over some period of

time. If employees were left to select their own projects,

typically only the short, easy or interesting projects would

get done. Difficult projects with potential high payoff to

ISEC may lay dormant at the bottom of some in-box. Some

type of weighting scheme could be used based on management's

judgement as to the difficulty or importance of the project.

The requirement to balance the load equitably among the

employees is no easy management task and may offset the ease

of implementation and ease of use advantages. [Ref. 27: p.

47]

(6) Complexity and Quality Metrics. The work

of Maurice H. Halstead (1977) and Thomas McCabe (1976) has

given birth to a another view of productivity measurements.'

Halstead developed a number of metrics that are computed

from easily obtained properties of the source code (e.g. the

total number of operations in a program). The metrics he

4A complete description of these metrics is beyond the
scope of this thesis. They can be found in most modern text
books on software design or software engineering including
Richard Fairley's Software Engineering Concepts,
McGraw-Hill, Inc., 1985.

44

..

.- -.--.-.-.-. . ..-.-.-.--.-. . ..-i- - -- -- -i- i - < i --?. ,i- .--.

proposed were a program length metric, a program volume

metric, and a program effort metric. Followup research has

proven that Halstead's effort metric is well correlated with

the observed effort required to debug and modify small

programs. Program effort thus appears to be a measure of

interest for software maintenance. [Ref. 33: pp. 323-324]

McCabe observed that the difficulty of

understanding a program is strongly influenced by the

control flow for that program. McCabe's metric is based on

graph theory but really amounts to adding the number of

logical operators (AND, OR, and NOT) to the number of

decisions. To keep errors to a minimum, he recommends an

upper bound of 10 as the maximum complexity for the control

graph of an individual routine. McCabe's original research

demonstrated strong correlation between cyclomatic

complexity, ease of testing and the reliability of the

routine. Thus, McCabe's metric can help identify those

modules that are candidates for rewrite. [Ref. 33: pp.

324- 325]

Arthur offers two complexity measures for

COBOL programs. The first metric he suggests is to sum all

of the CALL, PERFORM, SORT, MERGE, COMPUTE, INSPECT, and

GENERATE statements and divide that result by LOC/l00.

Dividing by the 100 normalizes the metric for ease of

comparison with other programs. (There is nothing magic

about the number 100, it could just as well be 50.) This,

he claims, provides a metric called 'function density' which

is actually a complexity measure. The higher the functional

density, the more functional and modular the program.

[Ref. 28: pp. 135-6]

Arthur's second complexity measure counts

the number of decisions in the program. The sum of the IF,

PERFORM UNTIL, PERFORM TIMES, and SEARCH WHEN counts gives

the total number of decisions in the module. This

45

-w 7W r

represents a basic measure of program complexity and

testability. This sum is then divided by the total LOC in

the program, and again is normalized by dividing by 100.

This metric is known as "decision density"; it provides the

* number of decisions in each 100 LOC. Arthur claims decision

density is a highly representative measure of complexity,

"the cruel task master of maintenance programming."

In addition to measures that focus

primarily on the coding phase, there are other quality

metrics for documentation, testing, etc. Productivity

measures for documentation include: (1) cost per

documentation page; (2) document pages per unit of time; and

(3) document cost per 1000 L0C. Productivity measures for

testing might include: (1) test cases developed and

executed per unit of time; and (2) cost per defect. Note

that these are partial factor productivity measures. As

such, they probably can and should be used but only with

* extreme caution - they are all susceptible to manipulation

and gaming. They may influence employee behavior, depending

* on management and the incentives program established, to

* maximize some ratio at the detriment to the total process

and the organization.

It is appropriate to end this section with

a quote from Tom Gilb, author of Software Metrics. Gilb

says:

Again, we are forced to recogniz4, that, although many
readers might be tempted to argue 'I can t go around and
measure everything. my pro ram~mers have too much work
to do already, the in~roduction of appropriate
measuring techniques does not cost, it saves. it is not
a luxury, it is a necessity. DZ-ef. 34: p. 4]

It is amusing to note that Gilb dedicated his book to all

the people who have patiently explained to him why it is

"impossible", "impractical". or uneconomical" to measure

software quality!

46

C. IMPLEMENTATION OF A PRODUCTIVITY MEASUREMENT SYSTEM

1. Overview

The previous sections have discussed the "why" and

the "what" of productivity measurement; we now proceed to

the "how" - that is, implementing a system to monitor

performance. Why doesn't every organization have a

measurement system if there are so many benefits? As

previously mentioned, the collection and analysis of this

information is not free. It requires machine, people, time,

and other resources. Automation of the process may help to

lower administrative costs but it doesn't eliminate them.

Another problem is people's natural resistance to change.

In addition, some managers and employees may feel threatened

working in an environment where their actions are recorded

and documented. These human issues must be given

appropriate attention. But as Gilb pointed out above,

tracking productivity information is cost-effective in the

long-run - it is a necessity!

Capturing this information may be helpful for

reasons other than gauging performance. A measurement

system cam provide quantitative justification of resources

required for particular projects. Under the commercial

activities program, all non-mission-essential activities are

subject to private sector provision. For software

development and maintenance, this program would require ISEC

to bid on particular projects along with commercial software

houses. Such bids must be auditable, which implies that

productivity information must be quantitatively-based and

verifiable. [Ref. 27: p. 49]

2. Implementing the Measurement System

The following subsection discusses the

implementation process for an actual measurement system at

47

I.

ISEC. It has been adapted from and is based on the ideas of

Irving Siegel, author of Company Policy. [Ref. 21: pp.

45-53] Implementation of a measurement system consists of

the following 6 basic steps:

1. Top Management Commitment;

2. Task Force Selection and Charter;

3. Marketing the Program;

4. Collection of Information;

5. Designing the System; and

6. System Installation and Evolution.

Each phase is discussed below.

a. Top Management Commitment

As with most systems, unless the top brass is

commited to it, the chances for success are dismal. To

obtain top level commitment, it may be prudent to establish

a pilot program in one of the programming directorates. The

idea should be to collect data on a number of software

projects and evaluate several measures using this data.

Guidance should be solicited during this initial stage

concerning any restrictions or constraints which top

management may feel are appropriate.

b. Task Force Selection and Charter

The second step is the selection of a task force

or steering committee and developing the organizational

charter. Members should be strategically chosen. They

should represent a broad-class of organizational skills

required for software development and maintenance. Some top

level participation is advisable. The charter should be

formulated with an overall objective of devising a

monitoring scheme that satisfies company needs and meets the

stated time and cost constraints.

48

. -. ,.,.-. - . '-'.. '..... "" ". " "-."-.. -... . --. •"-"x-"-"--

C. Marketing the Program

The third step is carefully marketing the intent

of the program to all levels at ISEC. The fears and

anxieties of managers and the rank-and-file employees need

to be quelled before the rumor mill begins to churn.

Briefings, seminars, fact sheets, and the ISEC newspaper

should discuss the program and its purpose completely and

candidly. ISEC should consider designating productivity

officers at various levels to serve as liaison up and down

the chain.

d. Collection of Information

This fourth step may be more accurately

described as "doing your homework." ISEC's data bases and

skill resources should be studied. The lessons learned and

suggestions for improvement from the pilot program should be

documented for later use in designing the actual measurement

system. The programs of other government agencies should be

ascertained and evaluated. In particular, the General

Accounting Office (GAO), the General Services Administration

(GSA), the National Bureau of Standards (NBS), the National

Security Agency (NSA), U.S Air Force and Navy should be

surveyed to learn from their experiences. Neglecting these

resources would be a serious blunder. Another possible

source of information are the productivity offices that each

of the military services has. A thorough and careful

analysis of what information is currently being collected

should be conducted. Things often overlooked such as "who

will train management and the employees?" and "what will the

training consist of?" need to be addressed during this

phase. It is possible that ISEC does not have the in-house

assets to accomplish these myriad tasks. It may be

necessary to seek the assistance of a consultant.

49

e. Designing the System

The main objective of the task force is to

arrive at a first-generation monitoring system that

satisfies ISEC needs and constraints. This implies the

system is not static but evolutionary. All the lessons

learned from the pilot system should be considered to make

the transition process as smooth and painless as possible.

ISEC employee suggestions and the results of surveying other

federal agencies should also be considered. Automation of

the administrative accounting and record keeping system

should be "designed in" to the maximum extent possible. A

preliminary users manual should be written to guide the

operators of the system. It should describe the nature of

the system and its structure as well as covering the

measurement process itself and the procedures for carrying

it out.

f. System Installation and Evolution

It is probably wise to designate the first six

months or so as a trial period to work out the bugs, refine

the procedures and seek suggestions for improvement. The

process is much like developing STAMMIS for users. It is an

iterative process. Not everything can be prespecified in

advance. The trial system will stimulate new and better

ways to measure productivity.

D. SUMMARY

This chapter provided definitions for productivity.

Productivity was distinguished from production, efficiency

and effectiveness. The benefits for measuring productivity

were explained and the problems with monitoring productivity

were discussed. Some guidelines were included concerning

the use of productivity measures. Specific productivity

50

measures for software development and maintenance were

evaluated in light of their advantages and disadvantages.

Finally, a strategy for implementing a productivity

measurement system at ISEC was suggested based on the ideas

of Irving Siegel.

The next chapter discusses the problems with traditional

methodologies for obtaining accurate and complete

specifications. Prototyping and evolutionary development

are explained and recommended as an alternative to more

conventional techniques.

51

IV. REQUIREMENTS ANALYSIS AND SYSTEMS DEVELOPMENT WITH

PROTOTYPING

A. PROBLEMS WITH THE TRADITIONAL SOFTWARE LIFE CYCLE

1. The Traditional Software Life Cycle

Internal documents at ISEC reveal that the average

development time for standard systems is five to seven years

[Ref. 35]. This translates to users that are handcuffed by

inefficient and ineffective systems. It means managers are

not able to get the decision making information that they

need. With the continual rapid advancements in hardware

technology, it also means the system will be fielded on

obsolete hardware.

What causes a software development time of five to

seven years? Software development is a complex process so

there are no simple answers. Reviewing the software life

cycle may be helpful. Figure 4.1 is a representative

version of the traditional software life cycle. [Ref. 36:

p. 29] Figure 4.2 shows the phases of the DOD system life

cycle. [Ref. 2: p. 302]

As these figures show,

The software development cycle is often presented as a
sequential set of well defined phases, each with
specific products and reviews, which provide the
necessary structure to facilitate mana ement and control
by the developer/project manager. [Re. 37: pp. 74-5]

Despite this phased approach, the end result has frequently

been software that is late, over budget, or does not meet

user needs.

Many software professionals feel the life cycle

itself is the root of the problem. Daniel McCracken and

52

Figure 4.1 The Traditional Software Life Cycle.

53

zI

z Z zI
0 >-

0

0~--I

I zz z
0 z-

~U

I- w -

o U <
z w f)6

z C-'

Lz z 0
- LL.n z

o0 U

Co x

zz

Zz w

-0 z

I- U nC -

C. ZW~ a -r

La < z- C. U

0 z

7.- C. .a

Michael Jackson, authors of "Life-Cycle Concept Considered

Harmful", put it this way:

The life cycle concept perpetuates our failures so far,
as an industry, to build an effective bridge across the
communications gap between end-users and systems
analysts. In many ways it constrains future thinking to
fit the mold created in response to failures of the
past. [Ref. 38: p. 30]

Along these same lines, G. R. Gladden, Supervisor of Quality

Assurance at Honeywell's Build Services Division, warns:

I am of the opinion that the concept of a 'software
life-cycle' is no longer helpful, indeed may be harmful
to our software development profession. In its various
forms the life cycle has sought to describe the software
development process as iterative events within the major
tasks of design, implementation, test, etc. One begins
to visualize the development process as a sequence of
tasks waterfalling' into one another while within each
task modifications occur iteratively as a better
understanding of the system is acquired. These
interactions work together to extend project schedules,
invalidate designs, alter test requirements and to
generally infuriate customers. [Ref. 39: p. 3]

ISEC, in an effort to diminish the "software

crisis", has tried a variety of techniques and methodologies

that have helped improve the situation. They attacked the

problem by standardizing their efforts and formalizing the

process. They attempted various structured approaches

including structured analysis. Voluminous specification

documents were "ping-ponged" back and forth between the FP

and ISEC. Regrettably, major problems remained. Why?

The specification document is the foundation on

which the software is built. It is fundamental to the

conventional software life cycle. James Martin, author of

the world's best selling computer books, believes that there

are serious problems with specification documents and the

process by which they are validated. Table VII lists the

major problems of the process. [Ref. 2: p. 7] There are

55

.

many who share Martin's thoughts. McCracken and Jackson

write:

systems requirements cannot ever be stated fully In
advance, not even in principle, because the user doesn t
know them in advance - not even in frinciple. To assert
otherwise is to ignore the fact hat the development
process itself changes the users perceptions of what is
possible, increases his or her insight into applications
environment and indeed often changes that environment
itself. *e suggest an analogy with the Heisenberg
Uncertainty Principle: any system development activity
inevitably changes the environment out of which the neea
for the system arose. Systems development methodology
must take into account that the user, and his or heryeeds and environment, change during the process.
Ref. 38: p. 31]

TABLE VII

PROBLEMS WITH THE SPECIFICATION PROCESS

* It lacks precision. It cannot be converted into
computer code without many assumptions and
interpretations.

• It contains many ambiguities and inconsistencies.

i It is usually incomplete.

""* It is often so long and boring that key managers
do not read it. Tney read only the summary.

* It is often misinterpreted by both sides. Often
its readers think they understand it but in fact
do not.

a Sometimes much trivia and motherhood are added to
the document. Both sides understand this. It
increases the comfort level, but has zero value.

* The specification document is not designed for
successive refinement as the problems become
better understood. It is intended to be a
complete document which users sign.

56

"o°~.
*

100 NOTE; NONLIN EAR

to

I's WG OPERAT:OW

LIFE VICLE PH4ASE IN' W1CR*
_ TEcTrD Aft NOKECTIb

Figure 4.3 Relative Cost to Correct Errors
in Software Life Cycle.

What do these specification problems mean in

dollars? Figure 4.3 shows the relative cost of correcting a

requirement or design error as the product progresses

further into development. It helps illustrate the high

level of risk involved with the traditional software life

cycle. When errors are found late in the cycle,

requirements have to be revalidated, design redone, software

and system retested, and documentation rewritten. In his

article "Seven Basic Principles of Software Engineering,"

Dr. Barry Boehm supports this idea when he writes:

There is one single message about developing reliable
software which out weighes all the others. It is to get
the errors out early.

One of the most prevalent and costly mistakes made on
software projects today is to defer the activity of

57

,.. -.. -..-..... ,..-. . .---. "... . . -.' .- "--. .". ."--.,''-- """"

;.". "".". . .,-'. ''' .' .,. ,. ' .. '. ' .. '. ' .. ,- ' ' ,.2 . '. ' ' ,, .>", _' " ,"., ,- ;

detecting and correcting software problems until late in
the project. There are two main reasons why this is a
mistake:

1. Most of the errors have already been made before
coding begins; and

2. The later an error is detected and corrected, the
more expensive it becomes.

[Ref. 40: p. 9]

The cost to correct increases dramatically as we move from

phase to phase. Errors traced to specification documents

are very expensive to fix.

2. Maintenance Considerations

We need to look beyond just software development and

consider the entire software life cycle. The goal is to

minimize total life cycle costs. Minimizing only software

development costs may cause suboptimization and possible

higher total costs.

It is well established that maintenance activities
consume a large portion of the total. life cycle budget.
It is not uncommon for software maintenance to account
for 70 percent of total life cycle costs (with
development receiving 30 pei...ent) [Rel. 33: p. 311].

Figure 4.4 is a graphic portrayal of these facts.

Software maintenance' involves developing enhancements,

adapting to new environments, and correcting problems.

The following quote from Software Engineering

Concepts captures the essence of the activities in the

maintenance phase:

Software product enhancements may. involve providing new
functional capabilities, improving user displays and
mpodes of interaction,, upgrading external documents and
internal documentation, or upgrading performance

'Sm software engineers; prefer the term evolution to
maintenance. Although evolution mai be a more accurate term
for this phase, the more traditional term will be used here.

58

INTENN)bEVELOPMENT

60-20%

Figure 4.4 Maintenance - The Largest Cost Driver.

characteristics of a system. Adaption of software to a
new environment may involve moving the software to a
different machine, or for instance, modifying the
software to accommodate a new telecommunications
protocol or an additional disk drive. Problem
correction involves modific tion and revaldation ofsoftware to correct errors. tRef. 33: p. 311i

It has been estimated that 60 percent of the

maintenance budget involves enhancements while adaption and

correction each account for 20 percent of the maintenance

effort (See Figure 4.5). If the above statistics are

correct, we can conclude that over 40 percent of all life

cycle costs are for product enhancements. Why such a high

percentage for enhancements? A major contributing factor is

that formal, structured techniques have not provided

software developers with complete or accurate design

59

....

-A-APT I NS

- - C 9oR ECTI NS

ENHANCEMENTS IO070
a*40 so 100I I II!

- OF MAI rt.kNC- A.TI IP TtoES

Figure 4.5 Relative Effort for Maintenance Activities.

specifications.' A methodology or tool that could provide

accurate and complete specifications would reduce the effort

necessary for product enhancement. This, in turn, would

decrease maintenance costs thus reducing total life cycle

costs.

To increase productivity, ISEC must change their

traditional way of developing STAIMIS. This rather bold

statement accepts "the challenge" of the Commander of

USAISC, Lieutenant General Emmett Paige Jr., who declared:

'Few would argue that unstructured code is better than
structured code. Structured techniques have created
software that is easier to understand and maintain.
Structured techniques have been less successful however,
providing clear, concise, consistent, and complete design
requirements.

60

....-.-..-..--.--.-. *...- *-..

19e need, to change the wa Twe do business - challenge the
way we ve always done i - and develop innovative ways
to field systems sooner [Ref. 41].

ISEC must seek to bridge the communications gap between the

functional proponent, the ASD, and the user. Traditional

requirements analysis techniques have resulted in a document

that few people read or understand. Bernard Boar, author of

Application Prototyping, makes the following comment:

If you are serious about alleviating the productivity
problems with application devel3pment, there is only one
question that deserves your attention: What technique
offers the highest probability of delivering a clear,
correct, consistent nd validated rtquiremen statementof the user s need? [Ref. 42: p. 29]

Boar's answer is, of course, prototyping. We will explore

prototyping in subsequent sections in this chapter.

B. PROTOTYPING AND EVOLUTIONARY DEVELOPMENT

As the previous section has illustrated, the net result

of improper requirements analysis are increased costs,

duplicated efforts and a poor product. A definition of

requirements and specifications is probably overdue.

Requirements provide an understanding of the general

applications area and should include a list of desirable

features that the system should contain. Specifications

record precisely what the function of the system is. It is

derived from the requirements. Specifications normally do

not involve "how to" implementation details. [Ref. 43: p.

4]

A prototype is nothing more than a model or pilot

system. Prototyping is not a new concept. Scientists and

engineers learned long ago that models and pilot systems are

necessary and useful learning tools which lessen the

inherent technical risks associated with developing new

61

z, . ..

systems. Software developers have been slow to use this

approach when building application programs.

Fred Brooks, respected author of The Mythical Man-Month

and project manager for the IBM 360 operating system, writes

The management question, therefore, is not whether to
build a pilot system and throw it away. You will do
that. The only question is whether to plan in advance
to build a throwaway, or to promise to deliver a
throwaway to the customers. Seen this way, the answer
is much clearer. Delivering that throwaway to the
customer buys time, but it does so only at the cost of
agony for the user, distraction for the builder while
they do the redesign, and a bad reputation for the
product that the best redesign will find hard to live
down.

lence plan to throw one away; you will anyhow.
Ref. 44: p. 116]

There are two basic views of prototyping. One is the

Fred Brooks' view. That is, the prototype is seen as a

requirement specification-, technical feasibility-, and/or

requirements validation tool. It's a throwaway and nothing

more. The other view of prototyping is known by several

names; incremental development, iterative development,

iterative refinement, and evolutionary development are the

more common names. Dr. Boehm describes incremental

development as:

Development of a software product in several expanding
increments of functional capabilityt as a means ol
hedging,against development risks, of smoothing out the
project s personnel requirements, anj of getting
something useful out early [Ref. 40: p. 8].

The throwaway view of prototyping is the older of the

two views yet it represented a radical change to software

development practices in the early and mid 1970s. Except for

the most progressive software developers, very few accepted

prototyping as a development methodology. With the advent

of fourth generation or non-procedural languages in the late

62

1970s and early 1980s, the second view of prototyping became

technically feasible. Yet as Boar wrote in 1984,

"Prototyping of large systems would not have been possible

just two years ago." Thus, as advancements have been made

in fourth generation languages, the real value for

applications development has only recently been established.

C. ADVANTAGES OF PROTOTYPING

The literature on prototyping suggests both qualitative

and quantitative benefits of prototyping. Table VIII

summarizes the major advantages suggested by authors who

have hands on experience with prototyping.

Experience to date shows that prototyping is usually

faster than traditional methods but not always. The main

benefit of prototyping is the role it plays bridging the

communications barriers in the development process. There

exist cultural differences between the user, ASD, and the

FP. These are the result of technical and organizational

differences. The prototype helps to create a common

framework from which to work. Specifications are better

because they are in a form the user can realistically

validate. It frees the user and the FP from being forced to

sign off on reams of paper that they vaguely comprehend.

[Ref. 45: pp. 38-46]

Because the user is an active participant, there are

significant benefits resulting. The man-machine interfaces

can be tested early in the life cycle and adjusted as

necessary. As users gain experience with the prototype,

they can provide valuable feedback for changes and

enhancements. Users can change their mind; specifications

are not locked in concrete so early in the process that good

ideas are frozen out. There is a natural bonding that

occurs during the development, feedback, and testing

63

.

TABLE VIII

ADVANTAGES OF PROTOTYPING

* Provides a facility to permit assessment of the
impact of the system on the whole user
environment.

* Forces a user centered approach. Users can
change their mind. User acceptance is easier to
obtain.

* Permits early testing of human/machine
interfaces.

* Helps alleviate project communication problems
caused by cultura differences.

e Provides a medium for validating requirements.

* Requires fewer programmers.

* Potentially decreases development time.

* Reduces technical risks.

*Reduces maintenance costs thus reducing life
cycle costs.

*Stimulates programmers and increases their
motivation level.

process. Users perceive (quite correctly) that they are an

integral part of the system. In addition, users develop a
"'warm feeling" for the end product, hence, their confidence

increases which facilitates acceptance of the system.

[Ref. 46: pp. 15-18]

This author believes that the greatest potential

benefits of prototyping will be for large systems

development. These are the projects with the longest

development lead times and have the highest degree of risk

associated with them. An incremental approach where the

heart of the system is developed first and then

embellishments and refinements are added should reduce

64

development risk and total life cycle costs. Designs and

ideas that do not work out can be scrapped at minimal cost

and embarrassment to the developers.

D. PROTOTYPING LIMITATIONS

Despite the numerous advantages of prototyping, it does

have limitations. Prototyping may frustrate users that have

seen a working model. Some users may want to implement the

prototype directly - something it is not normally designed

to do. Experience with prototyping at the Del Monte

Corporation resulted in the following observation:

Systems development learned that they (the user) thought
the application was 90% complete. But this was not so -
the prototype only simulated the operation of the
system. Users had little concept of the amount of work
needed to complete a prototype - adding validation and
editing routines implementing the database design,
adding security, backup, and recovery features, turning
it over to operations and maintenance programmers, and
so on. Users often become impatient when aevelopment of
these 'back end portions appeared to be taking too
long. [Ref. 47: p. 2]

Del Monte used two approaches to counteract this user

reaction. First, they "phase implement" the system creating

the critical portions initially and adding functions

incrementally. Second, they have end users assist in the

programming. They also try and reduce the system to the

smallest version that will still meet basic user

requirements but may lack the "bells and whistles."

[Ref. 47: pp. 2-3]

Another limitation of incremental development is that

prototypes are not developed with efficiency in mind. The

idea is to minimize human resources by developing the

software faster and using less programmers. It is possible

to build hybrid systems today which take advantage of the

efficiency of COBOL and the coding speed of fourth

generation languages.

65

TABLE IX

LIMITATIONS OF PROTOTYPING

Prototyping does not necessarily result in
shorter development time.

* Because of the iteration process, resource
planning and time estimating procedures are
difficult.

e There exists a possibility that something major
may be left out of the system.

* The issue of when to stop the iteration process
is not clear.

* Some users may get bored or irritated if the
iteration process takes too long or if the
initial prototype is way off the mark.

* Some users may want to implement the prototype
directly.

& Prototyping may require a substantial investment
for the procurement of software tools, training
costs and additional computer hardware.

* Prototyping does not always use computer
resources efficiently.

* Prototyping is not appropriate for all types of
applica ions.

. Programmers may feel threatened by prototyping.

Prototyping does not allow the software developer to

throw away software engineering principles. There is still

a need to do a preliminary requirements analysis prior to

building the prototype. The larger system environmental

constraints will eventually have to be reckoned with.

Developers who ignore documentation during evolutionary

development will discover in the maintenance phase that

their "shortcuts" may actually increase total system costs!

Rigorous structured techniques are still important to ensure

all of the bases have been covered.

66

Other authors have suggested additional limitations of

prototyping. Table IX is a summary of prototyping

limitations.

Whether all the above complaints, issues and limitations

are valid is a matter of debate. Regardless, prototyping is

not a panacea. Its limitations must be considered before

applying it to a particular problem.

E. A BRIEF OVERVIEW OF THE PROTOTYPING LIFE CYCLE

Figure 4.6 shows a proposed software development life

cycle which acknowledges the effect of prototyping on the

development process [Ref. 45: p. 105]. The Feasibility

Phase is the same as in the traditional life cycle model.

During the feasibility phase, typically a preliminary

cost/benefit analysis is done as well as determining the

applicability of a computer-based solution. If the

application is appropriate, the Prototype Phase seeks to

develop user requirements.

* FEASIBILITY

* PROTOTYPE

* OPTIMIZATION/COMPLETION

* CONVERSION

OPERATIONS/MAINTENANCE

Figure 4.6 The Prototyping Life Cycle.

67

."....-..........'.'-..-.".............-,-..."-........"..-..-.".."......".-.-.."."."...-"-'.-..'-..--..-........

Prototypes initially ignore many larger, system

constraints. The Optimization/Completion Phase brings the

prototype into harmony with any operational constraints. It

is usually neither feasible nor prudent to implement a

prototype directly. Software that is appropriate for

prototyping may not be appropriate for production

architectures. Efficiency, data base size, and transaction

processing rates are considerations for the actual systems

which are largely ignored by the prototype. The Conversion

Phase addresses these types of issues. .[Ref. 45: p. 104]

The final phase, Operations/Maintenance is similar to

its counterpart in the conventional life cycle. Iteration

does not magically stop when the system is fielded. Laws

and regulatory changes, user needs, and environmental

changes will cause the STAMMIS to evolve. It is important

to consider what changes in the software are likely to be

made when the prototype is built. The software should be

written to accommodate such change and thus reduce

maintenance costs. [Ref. 48: pp. 226-235]

F. PROTOTYPING APPLICABILITY AND IMPLEMENTATION AT ISEC

Not all system structures are good candidates for

prototyping. Applications that are extensively

batch-oriented are probably inappropriate for prototyping.

Algorithm-based problems and problems with limited

transaction processing but which require considerable number

crunching power do not create a conducive environment for

rapid iteration. Many of the Army's STAMMIS are batch

systems. This is probably due more to prior hardware

constraints and when the MIS were developed rather than a

blanket statement that the Army prefers batch MIS to

on-line systems. User and management needs would be better

served in most cases if they were on-line or real time

systems.

68

S.

A big question, then, is whether prototyping is

appropriate for STAMMIS development. Management information

systems tend to deal with structured problems. Based on his

Sexperience at American Telephone and Telegraph (AT&T), Boar

sums up prototyping candidates this way:

Prototyping works best for on-line transaction
processing oriented applications. The application
should be a structured problem with a large amount of
data elements and record relationships but a small
amount of algorithm processes. LRef. 45: p. 64]

Nearly all STAMMIS meet these criteria.

Given the two views of prototyping discussed earlier,

which view of prototyping is appropriate for ISEC? Perhaps

both are appropriate. The throwaway prototype is applicable

to STAMMIS projects that, for whatever reason, must be

contracted out. The skeleton system developed during the

prototyping process can be used as a requirements document.

It may also be an appropriate view for a STAMMIS which

requires a degree of efficiency that current fourth

generation languages do not provide. In both cases, the

prototype serves as a requirements/specification document.

The evolutionary or iterative approach is appropriate

for most STAMMIS developed in-house at ISEC, regardless of

application size. Some literature on prototyping suggests

that it will only support small systems development.

[Ref. 49: p. ID/9] This may have been true in 1978 but there

is evidence that this is no longer true today. Boar

contends that:

Given the state of software technology today, there is
no reason why the techniques described in this book
cannot be used to build rapid prototypes of medium and
large size applications as well as simple ones [Ref. 45:

69

- •.......................... , .,... -% ".

ISEC has done some recent experimenting with

prototyping. The ASD assigned to support the Logistics

Center at Ft Lee, Virginia, has successfully built two

logistics systems using an incremental development

strategy.7 Their successes are a testimony that prototyping

* works. The initial test system, the Standard Army Retail

Supply System (SARSS), was created using a technique known

by the acronym STEP-UP (Systems Through an Evolutionary

Process Using Prototyping). SARSS was no trivial project.

Yet in only four months, they had designed, developed, and

tested a system of nearly 175,000 lines of code. SARSS was

then demonstrated to users and, through user feedback,

on-the-spot improvements and enhancements were made. ISEC

estimated that the system will be fielded in two years (from

project initiation) compared with the average track record

of 5 to 7 years.

SARSS was a bold step for ISEC. To attempt such a

venture meant largely ignoring normal Army and DOD system

development policies. The other success story is the Unit

Level Logistics System (ULLS). Two more systems are being

prototyped and are scheduled for fielding within the next

year. All of these systems are interactive systems

employing the latest microcomputer technology. They can be

run from menus or with a command language thus supporting

both beginner and experienced users. They also feature

* extensive "help" facilities. [Ref. 50: pp. 1-14]

Why were these systems successful? There are several

reasons; they are listed below.

'The ISEC ASD that supports logistics systems is
physically collocated with he FP in the same building.
This is not true of the ASDs that support personnel and
financial systems. This author believes that it was a
fundamental reason why the two projects succeeded.

70

1. The physical collocation of the FP and ASD helped

foster a team attitude and facilitated problem

solving, and communication problems. The "We - They

Syndrome" was eliminated.

2. Good management and software engineering techniques

were employed. Careful planning and quality

assurance activities such as walkthroughs and testing

at multiple levels, a "murder board" and change

control techniques were conducted.

3. The users were an integral part of the process. User

feedback was sought at various phases and their

contributions in terms of improvements and

enhancements were significant.

4. Prototyping represented a new challenge to the ASD

supporting logistical systems. It was exciting to

work with an innovative software development

methodology. This challenge and excitement led to

employee enthusiasm and internally-driven motivation.

There are some things that must be changed if ISEC is to

see long range benefits from prototyping or evolutionary

development. A major problem for the developers at Fort Lee

was the lack of an integrated software tool set to

facilitate STAMMIS development. The tools (TAPS and TAPS

II) provided by ISEC's Executive Systems Software

Directorate (ESSD) are not adequate. In fact, the primary

tool used to develop SARSS and ULLS was written in-house at

ISEC. More will be discussed about the need for an

integrated tool set in chapter 5.

A second potential problem is the ASD's conscious

decision that documentation is not an integral part of the

evolutionary development process. To adopt such a

philosophy is to ignore what history has taught us.

Programs that are not documented are more difficult to

71

............................-.........---.-.-..-.- " -v '.,.-v ',...-..:,.-.-," .. , ,.,4"-. C , ,. . .'-'-. -- ,"---, - , N -" ,--

understand and therefore maintain. Without documentation,

increased maintenance costs may offset the shorter

development time that evolutionary development offers. The

positive side of this issue is that an integrated software

tool set automates much of the documenting process.

G. PROTOTYPING AND EVOLUTIONARY DEVEOPMENT: THE BOTTOM

LINE

Traditional analysis methodologies have not adequately

come to terms with three overriding and persistent problems

of requirements definition. These problems are:

1. Users have extensive difficulties prespecifying final

and ultimate requirements;

2. Descriptive and graphic analysis techniques are

inadequate to portray the dynamics of an application;

and

3. Poor communication is an inherent and debilitating

problem among the developer participants.

Well-intentioned efforts to systemize and discipline the

process have not solved these problems.

The solution is the evolutionary development of systems

by the building and refinement of models. Recent

improvements in software tools and fourth generation

languages have made evolutionary development both feasible

and practical. Evolutionary development should become a key

definition strategy for STAMMIS because of the advantages it

offers. While not appropriate for all situations, it is a

high productivity methodology for solving the requirements

definition problem.' [Ref. 45: pp. 206-207]

'Purists would complain that prototyping and
evolutionary development are different methodolofies and
should not be "lumped together. While it may be true that
they are different methodologies, they both are similar and
useful techniques for solving the specification problems
that cripple so many software efforts.

72

V. THE SOFTWARE DEVELOPMENT ENVIRONMENT

A. INTRODUCTION

Several authors hold a rather narrow view of the

software development environment taking it to mean a kind of

development system. This author takes a broader view, one

similar to Capers Jones:

The pro ramming environment consists of the sum of the
phrslcal facilities tools social structures, and

in ellectual skills Aedicated to software production and
maintenance by an enterprise [Ref. 13: p. 4].

The physical facilities include such things as office space,

small conference rooms for team meetings, and technical

libraries. Tools refer to both the hardware and software to

support programmers and analysts. Social structures are the

formal and informal relationships within an organization.

(Organizational policies and programs shape many of the

formal and informal structures within an organization. Some

of these policies and programs will be discussed in lieu of

issues such as the pros and cons of matrix organizations

versus functional organizations.) The intellectual skills

includes the initial skills employees have when hired and

the additional training they receive on the job and in the

classroom.

This chapter will evaluate the programming environment

at ISEC. A major portion of the chapter will be dedicated

to tools which support the programming effort. The

investment in the right tools (assuming proper training and

use) should provide significant productivity gains. The

other environmental factors will be covered, but in less

detail. Nevertheless, they are important and must not be

ignored.

73

B. THE PHYSICAL ENVIRONMENT

The physical environment plays a major role in employee

motivation, loyalty, and productivity. Many managers assert

that people are their most precious asset. If this is true,

then employee's work areas should be planned with

psychological and physical comforts in mind. This will help

eliminate such problems as fatigue, eye strain, and

backaches. The proper environment can also improve

motivation, increase self-esteem, lessen anxiety levels, and

improve concentration. [Ref. 51: pp. 1"8-19]

The physical environment at ISEC is typical of

government office buildings. The facilities were not

designed around the specific needs of computer programmers;

they were designed for administrative functions. Common

complaints at ISEC center on the lack of space, lack of

terminals, lack of small rooms for team meetings and

walkthroughs, and a temperamental climate control (heating

and air conditioning) system. The facilities at ISEC bear

little resemblance to IBM's Santa Teresa Laboratory in San

Jose, California, which was designed for programming

development.

There is no firm agreement as to what constitutes a good

physical work space. Opinions offered are highly

subjective. [Ref. 52: p. 335] Nevertheless, the design

criteria for the Santa Teresa facility might serve as a

model or target for which ISEC can aim. Table X presents

IBM's primary building and programmer design considerations

at the Santa Teresa Laboratory. [Ref. 53: pp. 4-25]

ISEC's present facilities do not measure up well against

the industry standard of 90-100 square feet of floor space

per employee. Programming requires different types of

office space and furnishings than purely administrative

functions. The computer printout listings and computer

74

TABLE X

THE PHYSICAL PROGRAMMER ENVIRONMENT - IBM

BUILDING REQUIREMENTS

* Outside awareness is essential for as many
offices as possible. Natural lighting is highly
desirable for all work areas.

* Emphasis should be placed on sound proofing,
particularly between adjacent offices.

* Maximum flexibility is desired for placement and
use of computer terminals and associated work
space.

* The site and in particular the data processing
and project tuildings must te secure.

PROGRAMMER REQUIREMENTS

* Communication. The primary consideration in
designing the offices is ease of communication.
Team members will have to be able to communicate
within programming teams, with other teams on the
same project, and with other teams world-wide.

* Priyacy. Each individual will require a personal
wor area with an environment that supports the
intensive concentration needed for high quality
problem solving. Acoustical isolation, adequate
ventilation, and individual control of the o fice
environment are key design considerations.

Furniture. Office furniture and fixtures should
be effective for many different tasks. The
programmer s basic document is a 15-by-ll-inch
anfold pro ram listing which opens to 5 by 22

inches. Work surfaces that can accommodate
several listings simultaneously and lockable
storage that can accommodate tKese documents in
hanging vertical files, are required.

" Computer Connections. Every office must have
connec-t-ons to access the computer via video
terminals. Preferably, each programmer will have
their own terminal.

* Technology. Design flexibility should be main-
tained with regard to current and future program-
ming technology.

reference manuals consume considerable work and storage

space. The programmer needs a desk for manual work, a work

75

....................................... . . **

table to spread out listings or notes, a terminal for

interaction with the computer, and appropriate storage

areas. All this should be encapsulated in a comfortable

work environment with adequate lighting, heating, air

conditioning, and ventilation. The programming team concept

used in large software projects mandates a requirement for

small and large conference rooms. These are used for team

meetings, walkthroughs, and formal reviews. ISEC is aware

of their space constraints and are looking at steps to

remedy the situation. The major space problems may be

alleviated if ISEC is able to lease additional space in

their office building in Falls Church, Virginia (the Melpar

Building).

An important question to consider is "how much will

productivity increase if we spend X thousand dollars on

improvements to the physical environment?" Unfortunately,

there are few if any valid, specific studies relating to

programming environments. IBM estimates an 11% improvement

in productivity at Santa Teresa. They admit that it is

nearly impossible to separate gains based on the physical

environment and gains based on other factors (e.g. process

and technology changes). [Ref. 13: p. 310]

Hertzberg's two-factor motivational model suggests that

physical facilities satisfy the hygiene or maintenance

needs. This does not mean that upgrading the physical

facilities will not yield increases in productivity,

efficiency or creativity. Research has shown, though, any

increased motivation due to better working conditions may

not be as permanent as when the source of someone's

motivation is the task itself. [Ref. 54: pp. 12-13] On the

other hand, a poor working environment has a negative impact

on employee morale, absenteeism, turnover, and productivity.

To what degree is very difficult to predict or measure. A

survey conducted by Jac Fitz-enz in 1977 revealed that data

76

processing professionals regard working conditions as less

important than employees in other professions. [Ref. 55: p.

126]

C. THE STRUCTURAL ENVIRONMENT

1. Staffing

There is considerable evidence that suggests some

programmers are more than an order of magnitude more

productive than other programmers. [Ref. 56: p. 846] This

implies that management should seek to get these "super

programmers" rather than programmers on the low end of the

spectrum. ISEC has not attracted this sort of top taient in

the past which suggests they can do more in this regard. As

a minimum, they can screen potential employees before they

enter the intern training program. There are tests

available that can be useful for this purpose.

Boehm suggests some staffing principles for software

development; Table XI is a summary of his major points.

[Ref. 29: pp. 667-672] The principles of job matching and

career progression require some discussion. They sound

straight-forward and logical but are often not practiced.

Some people are placed in a job (e.g. VTA.ADS maintenance

programmer) where they become "irreplaceable" so they get

stuck there forever. Other people rise to positions where

their technical skills become obsolte after a few years.

[Ref. 29: pp. 668-9] Given the rapid evolution in the

computer field, we must provide opportunities for employees

to grow with the field. The message for management is to

keep people motivated by providing an atmosphere where they

can fulfil their needs.

Research by Couger and Zawacki has indicated data

processing professionals exhibit different motivational

tendencies than other workers. In particular, they have a

77

.'

.

TABLE XI

STAFFING PRINCIPLES - BOEHM

* Use Better and Fewer People
The bulk of productivity comes from a relatively
small number of participants.

• The Principle of Job Matching

Fit the task to the skills and motivation of the
people available.

* The Principle of Career Progression

An organization does best in the long-run by
helping its people self actualize.

* The Principle of Team Balance

Select people who will complement and harmonize
with each other.

• The Principle of Phaseout

Keeping a misfit on the team does not help
anyone.

higher growth need and lower social need than workers in

other professions. [Ref. 57: p. 126] The Fitz-enz study

showed that the age and sex of individual programmers and

analysts affects how they are motivated. [Ref. 55: p. 127]

The lesson for management from this is that they need to

learn what motivates their employees to increase

productivity.

With personnel budgets representing an ever-increasing
ortion of the DP budget, every mana er should strive to

ahlp the DP staff perform to bhe best of their
abilities. _A persistent effort by management can turn
motivation from a meaningless buzzword into a valuable
tool for impr ving productivity and reducing turnover.
lRef. 68: p. 9]

78

2. Awards and Incentives

Various authors have shown that, under the right

circumstances, reward systems can contribute to greater

employee productivity. Based on the author's on-site visit,

this avenue has not explored in any detail at ISEC. One

method worth considering is a productivity-based reward

system. It is a form of performance bonus system which tie

employee earnings to their output. The intent is to

motivate employees to produce at an optimum level. A 1980

General Accounting Office (GAO) report states that

productivity-based reward systems should not be used in all

situations. The report provides the following suggested

general principles:

1. Performance should be judged by objective measurable
production standards that include all important aspects
of the job.

2. The reward offered should be of value to the
employee and be significant enough to stimulate effort.

3. The connection between exceeding the production
standards and receiving the reward should be clear, and
employees should understand the plan.

4. The plan must be accepted by employees and fairly
applied by management. [Ref. 59]: p

The report further states that when the above principles

cannot be applied, organizations should not attempt to use

bonus pay as an incentive for productivity gains. The

Office of Personnel Management was to have drafted guidance

addressing the design, implementation, and management of a

productivity-based reward system. ISEC should attempt to

obtain that guidance.

David Sumanth, author of Productivity Engineering

And Management, provides a whole chapter on employee-based

productivity improvement techniques. One of the techniques

79

is a group incentive plan called Improshare.1 Sumanth gives

a detailed 3-page explanation of how the plan works (See

Sumanth, pages 405-407). Suffice to say, Improshare is

design:d to share productivity gains between employees and

management. No attempt is made to determine the source of

the productivity gains or the extent to which each worker

contributes. It operates on the premise that workers and

management will be interested in improving productivity when

both gain something from the increase. [Ref. 22: pp.

405-407] Sumanth offers some other individual and group

incentive plans that ISEC may wish to explore (See Sumanth,

pages 394-429).

Motivating employees is a management obligation.

Seeking new and better ideas to motivate employees to higher

levels should be a constant effort. Recognition of

outstanding employee efforts is a must for any manager.

Awards must be timely and commensurate with the performance.

Equally important, but often overlooked, are the day-to-day

"strokes" and "pats on the back" which employees deserve for

successfully completing assignments and for just "doing

their job." Research has indicated that recognition for

work completed is perceived as very important to employees.

We must never forget that people have feelings; they need to

feel wanted and appreciated.

3. Suggestion Programs

Don't all government agencies have suggestion

programs? The answer is most have a program, at least in

name. But many programs are not active programs. Having a

suggestion box up in a few locations can hardly be construed

as a bonafide active suggestion program. There are two

'Improshare is a Registgred Service Mark of Mitchell
Fein, apd is derived from Improved Productivity Through
Sharing.

80

" °.- m -.

related techniques which are particularly helpful obtaining

and implementing employee ideas. One method involves the

establishment of groups of employees who voluntarily

cooperate to solve problems related to all facets of a job.

These are known as quality circles. They evolved from

Japanese management practices and have received considerable

press in the last several years. Still, they have been

overlooked by most federal agencies.

The second technique is an extension of quality

circles called PQ teams. Sumanth coined the term which

stands for Productivity and Quality teams. The

distinguishing factor between PQ teams and quality circles

is that PQ teams are smaller and more functionally specific.

Usually a supervisor serves as a team leader to preserve the

present authority structure. Also, the group size is

normally less than 10 members. [Ref. 22: pp. 421-422] Table

XII is a summary of benefits from a PQ team program.

Sumanth contends that:

PQ teams are an effective means of improving employee
morale, quality, and productivity in an organization.
They have one single purpose in mind: To surface the
talents of individuals working in the organization to
the maximum extent possible by providing the specialized
training and management support necessary to accomplish
this.

Team Spirit, positive thinking, and the philosophy of
achieving excel lence are three important characteristics
of PQTs, making them not only efficient in accomplishing
improvements in morale, communication, loyalty,
productivity, .and quality, but also making them
effectlve in achieving organizational goals. [Ref. 22:
p. 4 22 j

4. Flextime

Flextime has been a mixed blessing for ISEC.

Flextime allows employees to avoid the Washington D.C.

rush-hour traffic and take advantage of their "biological

81

TABLE XII

BENEFITS OF PQ TEAMS SUMANTH

ORGANIZATIONAL BENEFITS
• Improved product quality and/or service
reliability.

* Greater customer satisfaction.

* Reduced costs of operation.

* Greater employee stability.

e More enthusiasm and involvement from employees
and management.

* Increased loyalty and commitment to the
organization.

* Management can spend Ciore time training employees
rather than "ordering' them.

* Improved productivity of operations.

EMPLOYEE BENEFITS

* Greater job security.

* Improved self-image of employees.

* Improved work environment.

clocks." It means employees on flextime arrive fresh rather

than tense and "stressed-out." Nevertheless, flextime is

only productive if the employees who arrive early (or stay

late) make productive use of their time. Managers and

programmer team leaders hinted that a good number of

flex' zie employees (20-40%) were not using their

unsupervised hours" efficiently. Reading the newspaper,

exchanging the latest gossip, and soaking up several cups of

coffee were some typical activities cited by management

which are non-productive.

82

The best way to approach this problem may be simply

the installation of a uniformly applied productivity

measurement system and good leadership techniques. Flextime

is a valuable program which has several benefits.

Cancelling the program is not recommended; doing so would

create bigger problems.

D. DEVELOPMENT AND MAINTENANCE TOOLS

1. Hardware Considerations

a. Execution Time and Main Storage Constraints

Boehm provides some figures in his book Software

Engineering Economics that indicate the procurement of

additional computer speed and storage can lead to

significant overall systems cost savings. This may be

somewhat counter-intuitive but excess capacity can actually

save money in the long-run. Boehm says:

Software productivity can be improved considerably by
acquiring enough computer speed and main storage
capacity to free the software development from the
excess effort required to shoehorn the software withintight execution time and main storage constraints.
Ref. 29: p. 662]

He also provides the following advice:

1. Overall system cost is generally minimized by
trocuring computer hardware with 30 to 50% more capacity
han is absolutely necessary.

2. The more the ratio of software-to-hardware cost
increases, the more excess capacity one should procure.

3. It is far more risky to err by procuring too little
hardware capacity than by procuring too much. This is
especially important, given the tendencies for
sizing estimates to be low and for software products to
expand during development and maintenance. Thus, the
preferred amount of hardware capacity procured should be
even higher tban the minimum system cost level.
?Ref. 29: p. 663]

83

This should become less of a problem as the hardware cost/

performance ratio and storage costs continue to fall.

b. Computer Turnaround Time

The personnel systems and some financial systems

STAMMIS are developed and maintained on an IBM 3033 (at the

Melpar Building) and on an Amdahl 580 (located at the

Vertical Integrated Automation BaseLinE (VIABLE) Regional

Data Center (RDC) in Newington, Virginia). There have been

complaints that the turnaround time for development and

maintenance work is next day service or 24 hours in some

cases. This is little better than batch processing.

Although measures have been taken to correct this, the

programmers and managers still perceive a problem. The

procurement of an IBM 3081 at the Melpar Building is

underway and may relieve the log jam.

A study was conducted by Major Washburn during a

two week individual mobilization assignment annual training

period in July, 1984. Washburn suggested that use of

micro-to-mainframe hookups to help reduce the turnaround

time problem."0 His idea was to off-load work from the

mainframe to some type of programmer work station. Little

followup action has been done on Major Washburn's

suggestion. This is a sign that the day-to-day workload is

so heavy that management does not have time for long-range

planning or productivity improvement. Because of the heavy

workload, ISEC may want to commission some bright Army

graduate school attendees to do thesis research in this

area. Specifically, the students could conduct a problem

analysis and feasibility study which addresses potential

"0A good source of information on this topic is a book
entitled The Micro-Mainframe Link, published by John Wiley &
Sons, Inc.

84

alternatives and a recommended course of action for ISEC

management.

Since Major Washburn's study, there has been

some improvement in the products which link mainframe and

microcomputers. Many of the products are based on the work

station concept. General Dynamics, a leading government

contractor, claims to have increased their productivity by

30% using VS COBOL Workbench by Micro Focus, Inc. (of Palo

Alto, California). (Their stated productivity goal was

50%.) To obtain their system, General Dynamics used a

competitive bid process in which the VS COBOL Workbench was

chosen from several bidder's products. It runs on IBM AT

and IBM PC/XT hardware which are the type of microcomputers

that ISEC has. [Ref. 60: pp. 34-35]

2. Software Tools

a. Introduction

Software tools can radically change and improve

the entire software development and maintenance process. A

software tool is a computer program designed to automate

some portion of the software development and maintenance

process. The development tool set should support both

management and programmers. Larger software projects

usually require a larger proportional period of time and

effort for management functions and documentation. In fact,

actual coding represents only 15-30% of the total effort on

large systems. The remaining time is spent planning,

coordinating, communicating, reviewing, testing, and

documenting the system.

A 1983 GAO report criticized government agencies

for not using software tools during the testing process.

Their study revealed that only 13% of the installations

surveyed used tools for software testing. [Ref. 61: pp.

85

- "-. ' • -"i"-.?i..- , ? ? i > $ <i $ " j?' -b .i ?j-.i .j. i, i . - --.. - ..-.- . -.--..

12-14] While the GAO study examined only testing, there are

many indications that tools are neglected as productivity

aides throughout the entire process. A 1984 study of 25

software development environments in the US and Japan

surprisingly revealed industry uses software tools

sparingly. [Ref. 62: p. 59] Rudy Bazelmans summarized the

reasons as follows:

1) The hardware engjneering background of most managers
causes them to (be) unsympathetic to the need for
software tools, 2) Most corporations lack an
organization whose charter is to evaluate, select and
develop tools, 3) The lack of reuse of tools, 4 Thetbundance of incomplete or poorly documented ools.
Ref. 63: p. 65]

b. Software Tools - Desirable Features

There are hundreds of software tools available

on the market today. Many are fine products, others less

so. The tools include text editors, linkers, static

analyzers, office automation packages, statistical packages,

program management packages, data base management systems,

cross-compilers, simulators, emulators, test data

generators, test coverage analyzers, application generators,

and many others. William Howden provides some insight into

the types (and cost) of tools necessary to support large

projects such as those ISEC develops. He suggests that the

system be built around a software engineering data base

which has a version control and automated project control

capability. Such a tool system would support all phases of

the software life cycle from requirements definition and

design to testing and documentation development. [Ref. 64:

pp. 321-325] Several authors say that a development software

tool set should be able to support these functional areas:

1. Prototyping;

86

.- P . .

.

2. Project management and budgeting;

3. Program coding and debugging;

4. Program testing;

5. Data base development; and

6. Automatic generation of development documentation.

To support prototyping, the software tools should be inte-

grated with an active data dictionary. The software and the

developer work through the data dictionary so that it main-

tains a current snapshot or model of the system. [Ref. 45:

pp. 118-119] A data base management system (.e.g. Applied

Data Research's (ADR) Datacom/DB) to facilitate prototyping

and programming functions is very useful. A fourth genera-

tion language capability to support prototyping (e.g. ADR's

Ideal) is recommended.

Three features are very important in tool

procurement. The tools should be compatible - that is, they

should be able to communicate with one another without

difficulty. They should be easy to use. Tools that are not

understood by the programmers will be "left on the self."

Tools should support the entire software life cycle. The

real key to productivity is automating as much of the

process as possible.

c. USE.IT - A New Approach to Systems Development

Most people would agree that automation of the

software development process would dramatically increase

productivity. Further, if the process could be based on

provably correct constructs, testing, system checkout, and

maintenance would be sliced to a mere fraction of the effort

they now consume. Margret Hamilton and Saydean Zeldin have

combined these two features into an integrated family of

tools supporting the system life cycle. It is called

USE.IT.

87

.*..

One could argue that USE.IT is actually a

totally different methodology to approach systems

development and does not belong in a section on software

tools. The counter argument would be that the basic

methodology is the same, only the tools are different.

Regardless of where it should be discussed, the concepts

behind USE.IT are intriguing. The coeditors of The Journal

of Systems and Software had this to say:

Hamilton and Zeldin's paper on the USE.IT system should
be considered "must reading" by all concerned with
software development. Their work . has now
matured into what James Martin has hailed as the first
complete system of tools which can result in provabl
correct software. It would be surprising, however, if
the paper did not evoke controversy among softwareprofessionals. [Ref. 65: p.]

The paper the coeditors refer to is entitled "The Functional

Life Cycle Model and Its Automation: USE.IT." One of the

coeditors is Major General Alan B. Salisbury, ISEC's

Commander! Below is a brief summary of how USE.IT works.

The first step is to define the requirements.

USE.IT has a requirements definition language called AXES.

AXES helps users define requirements with either statements

or a graphics mode. (AXES is based on Higher Order Software

(HOS) Theory which is described in detail in James Martin's

text Systems Design From Provably Correct Constructs.)

[Ref. 2: pp. 37-143] AXES defines systems from three basic

mechanisms: data types, functions, and structures. Axes is

not a pure programming language; nor is it a software

specification language. It is nonprocedural and can be used

to specify systems other than software (e.g. hardware or

people systems). [Ref. 36: pp. 40-41]

The next step once the requirements have been

defined with AXES is to check the requirements for

ambiguity, consistency and completeness. The Analyzer

88

..

component of USE.IT performs this task. After any problems

identified by the Analyzer are resolved, the requirements

are consistent and complete. [Ref. 36: p. 41]

The third step is performed by the Resource

Allocation Tool (RAT). From the analyzed AXES

specification, the RAT produces code automatically. The RAT

will even produce documented code if asked to do so.

(Additionally, the AXES front end produces a documented

hierarchy of the requirements for the user.) The power and

flexibility of the RAT are impressive. [Ref. 36: pp. 41-44]

The RAT provides the end-user with the capability to
reconfigure to any language or machine environment
desired, whenever desired, without modifying the
requirements definition. Since the Analyzer has
guaranteed that the requirements used by the RAT are
consistent, the automatic programs produced by the RAT
are also consistent. Not only are the initial
requirements defined by the user guarantged to be
interface error free after the "programming phase of
development, they are lso guaranteed to ge the same
ones the user defined. [Ref. 36: p. 43]

Another useful feature of the RAT is:

The same set of requirements that has been "ratted" to
one environment (e.g. FORTRAN) can be ratted to another
environment (e.g. lda). This means, for example that
developers who are anxious to start to use the Ada DOD
standard language but who do not have the compiler and
other support tools yet available can define their
requirements in AXES and rat them to FORTRAN or to some
other HOL environment until Ada is available. They can
simply rat them to Ada when Ada is ready. It also means
that deyeloped systems are never obsolete just because
there is a new language or a n w conputer s stem
introduced within an organization. [Ref. 36: p. 43]

The final step includes compilation followed by

execution. This is done on what Hamilton and Zeldin call a

Higher Order Machine (HOM) which executes the "ratted"

requirements. The whole process sounds like a dream come

true. Table XIII is a summary of the USE.IT benefits.

89

-o..

TABLE XIII

BENEFITS OF THE USE.IT TOOL SYSTEM

* Interface errors are found automatically before
implementation and are eliminated.

* Requirements are complete, consistent and
unambiguous.

* Programming is automatic.

• The majority of the documentation can be
generated automatically.

e Functional integrity of the requirements is
maintained after implementation.

a A means to achieve reuseable software is
provided.

* Different requirements definition languages and
techniques can be integrated.

• Cost savings of up to 75% can be expected over
traditional methods.

* Specifications are easier to modify than with
most other techniques.

The predominate use of USE.IT is for designing

complex systems. James Martin speculates why:

Most complex specifications are inadequate. The human
mind simply cannot spot the ambiguities,
inconsistencies, and incompleteness in highly complex
specifications. And a team of human minds is worse
because they create pieces that do not mesh exactly. A
tool for creating compilable specifications enorces
completeness, consistency, and lack of ambiguity in the
specififations; otherwise, it cannot generate code for
them. [Ref. 2: p. 123]

Martin also says that USE.IT does not eliminate errors in

the concept of what a program should do; we can tell it to

do something stupid and the methodology can create provably

correct code for that stupid function.

90

..

. ...

USE.IT has been successfully used for large

applications. Substantial savings were docume ted.

RHamilton and Zeldin conclude that with USE.IT, an estimated

minimum cost savings of 50% results. Perhaps more

important, users get what they want because unambiguous

requirements definition and rapid prototyping are part of

the process.

d. Software Tools at ISEC

The Executive Systems Software Directorate

(ESSD) tests and procures software tools for ISEC. The

programming directorates have the impression that ESSD could

improve the support they provide. Tools such as TAPS are

1960s vintage and are no where near state-of-the-art. Rudy

Bazelmans published a recent article entitled "Productivity

- The Role of the Tools Group." [Ref. 63: pp. 63-75] He

discusses issues which are pertinent to ESSD such as

activities the tools group can do to help the programmers.

A significant problem facing ESSD is the long

lead time required to evaluate and procure perspective

software tools. The economic justification for government

procurement is a laborious drill involving many layers of

approval. A recommended approach to procuring a unified,

integrated tool system is to follow the pattern the Army

used on the VIABLE contract. The focus should be on the

functions the system must provide rather than on a specific

list of hardware and software to accomplish the functions.

The system itself should be modular and expandable. A local

area network type technology facilitates modular expansion.

Once a procurement document is in place, it can be used as a

vehicle for future tool system upgrades; the need for

re-justification of upgrades should be eliminated.

[Ref. 27: pp. 22-26]

91

= -.-.-....... - -

In preparing the economic justification for the

development tools system, trying to assess how users will

use the system is a problem. Determining requirements is no

easy task. It will take several months for the programmers

to be trained and feel comfortable with the system. Once

the become comfortable with the tool system, they will use

it in ways that are difficult to anticipate. [Ref. 27: pp.

25-26]

E. THE "INTELLECTUAL SKILLS" ENVIRONMENT

The training program at ISEC is commendable. The

courses offered in the continuing education program are

particularly outstanding; unless employees attend them,

however, they are worthless. Managers and programmer team

chiefs must encourage their workers to use this excellent

program. They must plan and schedule their employees for

appropriate courses. Sending subordinates to training is

important for several reasons. Among them are: (1) meeting

the high growth needs of DP professionals; (2) keeping

current with the latest techniques and technologies; (3)

increasing long-run productivity; (4) serving as a reward

for hard work or a break from the normal routine; and (5)

serving as marketing technique to attract new employees.

Managers should also attend certain classes to maintain (or

obtain) technical proficiency. The short-run productivity

decrease should be offset by increased long-run

productivity.

The intern training program at ISEC has been important

to the very survival of ISEC. Without it, ISEC's main

source of new programmers and analysts would slow to a

trickle. Although the intern training program is good,

there is some room for improvement. Four criticisms of the

program were raised by ISEC employees:

92

1. Entry screening into the program is too lax;

2. Poor performers in the program are not weeded out;

3. Software testing is not given adequate attention; and

4. There is little "hands on" training with software

tools.

These are definite shortcomings. The first two points

require management attention. Weak performers are a burden

on an organization. Not every person has the mental problem

solving abilities that programming requires. The intern

program is a good test of one's abilities. Candidates who

do not measure up should be phased out. It could be argued

that the last two points are better saved for

On-the-Job-Training (OJT). This assumes that programmer

team chiefs are good teachers and will take the time to

adequately train the intern graduates - a risky assumption.

The author thinks testing and tools deserve some classroom

time even if it means extending the program course length.

They are just too important to be left to chance.

F. SUMMARY

This chapter has been a review of the total software

development environment. It includes not only the physical

working conditions and tools but also the formal and

informal organizational relationships and the intellectual

skills of the work force. The area requiring the most

attention at ISEC is software tools. A unified set of tools

that are easy to use, compatible (ability to communicate

with each other), and which support the entire software life

cycle is needed. The physical working conditions have

considerable room for improvement. The training program at

ISEC is sound but could use some fine tuning. The

structural environment needs some management policy and

procedure innovations.

93

. *L. *

The next chapter focuses on management issues.

Management barriers to productivity and software contracts

.- are discussed. Project planning techniques and a software
productivity improvement program implementation plan are

presented. The chapter also raises some other management

issues such as the importance of staying "in touch"

customers.

94

:-.:.:.--..-... . . .,-. .. _..:.:.: : . -.- : . ., . ,

VI. SOFTWARE MANAGEMENT AND PRODUCTIVITY ISSUES

A. INTRODUCTION

Dramatic improvements in hardware and software

capabilities during the past several years have steadily

increased the complexity of systems development projects.

Today's environment requires the close cooperation of

technicians, specialists, users, analysts, and programmers.

The key to the success of this cooperative effort is

effective management procedures, policies, and practices.

In fact, of all the variables involved in software

development, many experts believe that management is the

most important.

This chapter is not about how to manage software

development and maintenance. There are many books and

articles available for that purpose. The objectives of this

chapter are to: (1) discuss some management barriers to

productivity; (2) explain common software contract problems

and their solutions; (3) discuss project planning systems;

and (4) provide the framework for establishing an integrated

software productivity improvement program at ISEC.

B. GENERAL MANAGEMENT ISSUES

1. Management Barriers to Productivity

The productivity problem is complex - t is many

smaller problems entangled in one large mess. Because it is

a complex problem, simple quick-fix solutions are doomed to

fail. Sumanth summed up the situation this way:

Productivity improvement must not be considered as a one
shot project or program. It must be on- oing and
continuous . . Whether newspapers or TV make the

95

.

7 R-R162 490 A PRODUCTIVITY ENHANCEMENT STUDY FOR THE US AMY
INFORMATION SYSTEMS ENGINEERING CONRND(U) NAVAL
POSTORRDURTE SCHOOL MONTEREY CR T F ROBERTSON SEP 85

NCLASSIFIED F/0 9/2EnnmnnnnnuEEEEnnnuE
EhhEEEEEmhEEEI

J7.

L3-2

6111t 111111.8

1.2 5 1111 1. 11111_1.6

MICROCOPY RESOLUTION TEST CHART

NAIOA 9VOE.AU OF STANDAROS-1963- A

.*.

L7

productivity issue a headline story or not, an
organization must strive to have a formal productivity
roess as a normal, routine function. [Ref. 22: p.

Below are seven of the major management barriers to

productivity.

a. Short-Run Blinders

There is considerable pressure on all levels of

management to look good today so that they can get a good

report card based on their short-run results. Despite the

lip service paid to the long-run, evaluations are tied to

the short-run. Productivity improvements do not happen

overnight. Frequently, improvements can decrease

productivity in the short-run due to learning curve

phenomena. Management must treat productivity as a long

term investment. Historically, the biggest gains in

productivity have been tied to technology and innovation.

b. The "Desk-Bound and Meeting Syndrome"

Managers tend to spend their time attending

meetings, reading and writing staff reports and proposals,

and reviewing computer printouts and mounds of paperwork.

Unfortunately, the thing that gets neglected is the

organization's greatest asset - their people. Productivity

suffers because the employees feel ignored and

unappreciated.

Two authors in particular are strong advocates

of "management by walking around" (MBWA). The term was

coined by Tom Peters, co-author of the classic In Search of

Excellence. He discusses the concept extensively in another

book he co-authored entitled A Passion For Excellence. The

other author who favors this management technique is Andrew

Grove, president of Intel Corporation (of Santa Clara,

California). Here is what Grove says about MBWA:

96

............ .

There is an especially efficient way to get information
much nellected by most managers. That is to visit a
particu ar place in the company and observe what's going
on there. Why should you do this? Think of whaE
happens when somebody comes to see a manager in his
office. A certain stop-and-start dynamics occurs when
the visitor sits down, something socially dictated.
While a two-minute kernel of information is exchanged,
the meeting often takes a half hour. But if a manager
walks through an area and sees a person with whom he Ras
a two minute concern he can simply stop, cover it, and
be on his way. bitto for the subordinate when he
initiates conversation. Accordingly, such visits are an
extremely effective and efficient _ way to transact
managerial business. [Ref. 66: p. 49]

Although the concept sounds like apple pie and motherhood,

ISEC managers interviewed said they wanted to do more MBWA

but just did not have the time. Employees interviewed

agreed that they rarely saw mid and top level management

"floating" in their work area.

c. Unwillingness to Experiment

Procrastination and constant delays for more

research can hamper the initiative and productivity of

employees. This is not to say "doing one's homework" is

unimportant. It is as long as it does not snuff out

enthusiasm and innovativeness. Peters tells us:

The most important and visible outcropping of the actionbias in the excellent companie is their willngness to
try things out, to experiment IRef. 67: p. 134j.

d. Ivory Palace Policies

Most authors agree that procedures and standards

are key components of the software development and

maintenance effort. Nevertheless, some of them are better

than others. All too often, these rules and policies are

made by the people who sit in their ivory towers. The

policy makers do not fully realize the impact on the field

97

because they have failed to go down "into the trenches" to

find out how things really are done and what the real

problems are. This suggests that there are too many layers

in the organization which isolates top management and

increases the communication gap.

e. Lack of Incentives

It is easy to talk about the virtues and

necessities of improved productivity. But without any

incentives to establish the commitment for improving

productivity, it is doubtful there will be much success.

The management implications are best summed up in the words

of Douglas McGregor "Commitment is a function of the rewards

associated with the achievement." As was mentioned in the

last chapter, there are several possible individual and

group incentive programs that can be used to stimulate

commitment.

f. Poor Management Training

Many managers have either too little training or

their training is too specialized. What organizations need

are managers who are problem solvers, decision-makers, and

team builders who can motivate and lead employees. If

managers are trained, it is often narrowly focused on such

areas as "structured technique number I" or "operations

research technique A." These may be important but not as

important as providing adequate leadership and direction to

employees.

g. The "Not Enough Time Syndrome"

Several authors suggest that managers will do

everything they can to meet some deadline regardless of

product quality. It seems there is always time to redo the

project but never enough time to do it right the first time.

98

.

This was a problem that was raised during the author's visit

and will be discussed. subsequently.

2. Close to the Customer

The importance of being "close to the customer" in

any organization cannot be overemphasized. We discussed

this earlier in the chapter on prototyping but it deserves

repeating here as a management issue. Peters and Waterman

wrote a whole chapter in their book In Search Of Excellence

describing the criticality of being "close to the customer."

The chapter provides several examples of excellent companies

going the extra mile for their customers even when it was

not necessarily economical in the short-run. Top management

in these companies has made the chain of command understand

that service is their business.

Whether or not they are fanatic in their service
obsession as Frito, IBM, or Disney, the excellent
companies all seem to have very powerful service themes
that pervade the institutions. In fact one of the most
significant conclusions about the excellent companies is
that, whether their basic business was metal binding
high technology, or hamburgers, they all define
themselves as service businesses. LRef. 6 7 : p. 168]

They do this by tailoring their compensation packages, award

programs, and training programs so that employees remember

how their bread is buttered.

ISEC could learn something from these excellent

companies even though ISEC is a non-profit support

organization. The functional proponent is actually an ISEC

customer. Establishing good working rapport can help

eliminate problems such as the FP establishing unrealistic

deadlines for projects. This author believes that, where

possible, the FP and associated ASD should collocate. This

would reduce communication problems and delays. Collocation

fosters a sense of team work thus destroying the "We-They

Syndrome."

99

Collocation has been very successful at Fort Lee.

One of the .most noticeable things during this author's

on-site visit was the excellent working relationship that

the logistics systems ASD shared with their FP at the

Logistics Center (Fort Lee). This was not the case for the

other ASDs. The relationship between the FP and ASD affects

performance and employee attitudes about their jobs.

Because people's motivation plays a significant role in

software development, collocation should be carefully

considered as a way to increase productivity. It at least

deserves further study.

Collocation would entail having the ASD that

supports financial systems move to Fort Benjamin Harrison,

Indiana. It would also mean that the ASD that supports

personnel and force accounting would move to the Military

Personnel Center (MILPERCEN) in Alexandria, Virginia (or

possibly the Pentagon). The benefits of such a move would

have to contrasted with the moving costs. Questions of

available space and computer resources need to be addressed.

"Close to the customer" is important in more direct

sense as well. Working closely with users in the field is

absolutely critical to obtaining complete and accurate

specifications when developing new systems. Users help test

the system and provide valuable feedback for additional

features and corrections. This, in turn, helps reduce total

life cycle costs by reducing future maintenance costs, the

largest cost driver in most systems. Auerbach Information

Management Series provides some additional insight below:

Organizations have found that the most successful
systems are develoted with a high degree of user
interaction during the design phase. Online systems,
for example, which depend heavily on efficient user
interactions, are most elfective when the user specifies
screen designs and functions while the project team
advises and performs the technical tasks.

User involvement should be greatest during the initial
phases of a development effort, when the systems

100

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2 2. 2."& " " i... ' ' i " '

requirements are Oefined in general and in det il. If
the user buys in at this point, the project s chance
for success is greatly enhanced. [Ref. 58: pp. 2-3]

3. System Quality and Productivity

Smart data processing managers are aware that system

quali:ty and high productivity are inextricably linked. This

may be somewhat counter-intuitive; the effort necessary to

achieve quality may lead one to the opposite conclusion.

[Ref. 69: pp. 107-108] Generally, the payoffs for "doing it

right the first time" are worth the added effort and

resources in the long-run. [Ref. 70: p. 115] Recall that

errors found during the maintenance phase are several times

more expensive to correct than errors found during design.

During the author's visit to ISEC 5-9 June 1985,

several programmers and managers were asked: "Given the

choice between meeting a deadline with an inferior product

or requesting an extension and presenting a polished

product, what would ISEC normally chose?" Most people

interviewed felt top management would meet the deadline,

although some felt this tendency might be changing. The

latter is at least encouraging. It does point out a problem

that is persistent in many military organizations. Managers

tend to take a short-run view of productivity rather than a

"We're in this for the long haul" perspective. Quality does

not always get the attention it deserves. This was the "No

Enough Time Syndrome" mentioned previously in the chapter.

Only conscious effort and dedication will turn this

situation around.

ISEC is not unlike other government agencies in this

regard. Two General Accounting Office (GAO) reports support

this. The first, entitled "Federal Agencies' Maintenance Of

Computer Programs: Expensive and Undermanaged," explains

101

.-...

77 7

problems and guidelines for software maintenance. [Ref. 71:

pp. 1-24] The thesis of the second report, entitled "Greater

Emphasis On Testing Needed To Make Computer Software More

Reliable And Less Costly," is that agencies pay lip service

to testing but fail to manage the software testing process.

The result is costly, unreliable software. [Ref. 61: pp.

5-14] Both reports are well written and are as applicable

today as when they were drafted. ISEC would do well to read

these reports and followup on the GAO recommendations. This

author's on-site visit flagged these two vital management

functions (testing and maintenance) as problem areas at

ISEC.

C. SOFTWARE DEVELOPMENT CONTRACTS

The VFDMIS contract has demonstrated, perhaps all too

clearly, some of the problems that arise in software

development contracts. In 1979, the GAO conducted a study

of software development contracts. Specifically, the study

included contracts for custom-built applications in the

federal government. These are the types of contracts ISEC

would use to procure STAMMIS software from a vendor. The

report included several causes of problems which were common

to all contracts GAO reviewed that encountered difficulties.

Table XIV summarizes the GAO findings. [Ref. 72: pp. 1-31]
The difficulties of software development are significant

even when the programmers and analysts are from the same

organization as the users who need it. Several additional

sources of difficulty, as described below, are added when

the software is developed by "outsiders." [Ref. 59: pp.

7-8] These include:

1. The problem definition and/or user requirements must

be defined so that outsiders can understand it;

102

TABLE XIV

SOFTWARE DEVELOPMENT CONTRACT PROBLEMS IN THE
GOVERNMENT

* Agencies overestimate the stage of systems
development they have reached before they
contract.

* Contracts fail to stipulate satisfactory
performance by the contractor.

e Agencies quickly overcommit themselves and fail
to contro? contractors through strict phasing.

e Agencies do not manage software development
contracts during execution.

* Agencies accept and pay for software without
adequately inspecting and testing it.

* Contractors claim that agencies fail to provide
adequate test data.

* Agencies do not always establish a single focal
point for communications with contractors.

* Agencies do not adequately specify or enforce
contract clauses for recovery in he event of
poor performance by the contractor.

* Contractors frequently fail to provide adequate
software documentation.

2. Contracting introduces an extra communication link

between the software developer and users;

3. Contractor personnel must be informed about agency

operations;

4. Agency management must control the quality of work

done outside the agency;

5. First-hand observation of progress is more difficult;

and

6. Acquisition of software from a contractor requires an

agency to identify and meet all applicable Government

procurement regulations.

103

.....................................

..**

With all these problems and complicating factors, it

seems reasonable to limit software contracts to the absolute

minimum possible. Because ISEC will continue to use

contracts as an instrument for meeting mission requirements,

we need to come to grips with ways to avoid the above

problems and difficulties. GAO recommends tapping the

resources of the General Services Administration (GSA) and

the National Bureau of Standards (NBS) for assistance. This

author strongly endorses such a recommendation because there

is no need for duplication of efforts. ISEC should benefit

by using other government resources. From both a management

and taxpayer's perspective, this seems logical.

Besides coordinating with GSA and NBS, the GAO

recommends training project managers in the overall skills

necessary to manage these contracts. The training should

include software engineering, contracting and management.

GAO also included a checklist in Appendix I of their report

which provides guidance on contracting for software

development. [Ref. 59: pp. 29-31]

A recent article in Datamation provides some excellent

pointers for solving some of the difficulties enumerated in

the GAO) report. In the article2 "Negotiating Software

Contracts", author Charles Harris also provides a software

contract checklist that appears useful. The article covers

various steps that relate to project management, negotiating

strategy and other substantive contract issues. Harris'

major points are summarized in Table XV below. [Ref. 73:

pp. 53-58]

D. PROJECT PLANNING SYSTEMS

1. Preface

Much has been written about project management

process techniques. The rampant problems in software

104

TABLE XV

GUIDELINES FOR SOFTWARE DEVELOPMENT CONTRACTS

NEGOTIATION

* Do not commit yourself too early to a particular
vendor or you will lose negotiating leverage.

* Use the negotiation phase to identify and iron
out problems and misunderstandings.

* Follow an organized, professionalcapfroach to the
procurement process to maintain con rol over the
negotiating process.

SPECIFICATION

9 Take the time to adequately document specifica-
tions.

* Consider a separate consulting agreement for the
vendor to develop the specifications at a fixed
fee before the software development contract is
signed.

* An alternative to a consulting agreement is a
stag~d software development agreement. The
user s ability to terminate such a contract is
beneficial in encouraging the vendor to produce
final specifications t at are responsive to user
needs.

ACCEPTANCE

*The acceptance procedure may well be the most
important user provision in any software acquisi-
tion agreement.

* Use a realistic acceptance procedure that tests
each module both separately and sequentially.

* Tie payments to deliverables.

WARRANTY, MAINTENANCE and RESTRICTIONS

* To assure performance after acceptance, you need
warranty and performance provisions that tailor
the vendor's response obligations to your partic-
ular needs.

response time for all vendor maintenance obliga-
tions including routine and critical fixes,
enhancements, and upgrades.

*An~ restriction of use (e.g. location, machine or
site) should be clearly documented.

105

development have provided many issues to write about! Over

the years, we have become smarter about how to manage

software development. It is no longer a "shot-in-the-dark

guestimate." Nevertheless, it remains complex and

difficult. We can and should borrow ideas from other

organizations and adapt them to our own systems. We must

exercise extreme caution, however, because things like

definitions and measures need careful explanation before

they can be implemented in a new environment.

Measuring productivity, for example, is not

standardized. There is no accepted industry-wide definition

of lines of code. What this implies for ISEC is that they

should "grow their own" system patterned after those

developed elsewhere. There has been some success with

project planning systems. Some methods worthy of

consideration by ISEC are: (1) an automated computerized

project management system; (2) the SLIM system developed by

Lawrence Putnam (who was employed at CSC (the forerunner to

ISEC) when he did the research in this area!); and (3) the

COCOMO system developed by Barry Boehm. They are described

briefly in the subsections below. There are several other

estimation models

2. Project Management Software

In his book, The Mythical Man-Month, Fred Brooks

points out that software projects become late one day at a

time. Not all slips are as dangerous as others.

How does one tell which slips matter? There is no
substitute for a PERT chart or critical path schedule.
Such a network shows who waits for what. It shows who
is on the critical path, where any slip moves the end
date.

The preparation of a PERT chart is the most valuableart of its use. Laying out the network, identifying
he dependencies, and estimating the legs all force a

great deal of very specific planning very early in a
project. The first chart is always terrible, and one
invents and invents in making the second one. [Ref. 74:
p. 49J

106

L
One of the problems with PERT (Program Evaluation

and Review Technique) and CPM (Critical Path Method)

Fapproaches is that they are not updated as changes occur.

Many feel that it just is not worth the effort to keep them

updated. The result is an obsolete PERT or CPM chart that

is no longer of value. To help solve this problem, there

are many mainframe and micro-based project management

software packages available on the market today."
1

Mainframe versions such as the Project Tracking

System by Management Science America keeps track of the

network critical path, organizes detailed accounting

information, produces detailed reports of budget variances,

and even handles nasty overhead allocations. Micro-based

products provide many of the same features but without all

the power and depth of mainframe versions. Micro packages

are flexible, portable, and relatively inexpensive. They

cost between $200 and $10,000 depending on the features and

power required.

Gene Schmidt, a consultant, says the key to

successful use of project management software is constant

checking on the actual progress of the programmers and

analysts.

The tendency of most systems analysts and programmers is
not to report productivity problems in the early weeks
of a project. They always think that they'll make up
the lost productivity next week or the week after. By
carefully checking how much work has actually been
completed and feeding this information into the
computer, we know exactl where we are on a project at
any time. LRef. 75: pp. 46-47]

'"The May 1985 issue of "Software News" contains two
articles by Len Horton describing several computerized
project management products. He also includes a list of
vendors with their addresses.

107

" There are additional benefits to this type of software. The

* use of project management software would be helpful if a

chargeback system is implemented at ISEC.

Certainly, project management software is no

panacea. Dr. Francis M. Webster, an expert on project

planning software, cautions:

I have one piece of advice for any manager who is
thinking about using project management software .
Don t ever use any progra to do something you aont
understand. if you gon t at least understand the
calculatiQns that the gram is making, you can getburned. LRef. 76: p. 4 1]

He adds later, however, that with the proper understanding

of project management software, it can be of significant

value. As Brooks alluded, it forces a discipline on

management. This author recommends ISEC consider and

evaluate several available packages for its use.

3. The Putnam SLIM System

The project planning software described above does

not really serve as a planning model for project resource

estimation but serves more to facilitate the planning

process. The Putnam SLIM system, however, is a planning

model. Putnam's model is based on the Rayleigh Curve and

can be used to estimate the size of medium to large scale

software projects. From this basic size estimate, Putnam

presents the methodology for converting the size estimate to

estimates of time, effort and cost. Putnam suggests the use

of simulations and linear programming to assist in the

planning process. [Ref. 77: p. 178]

The SLIM system is basically a macro approach to

cost and effort estimation that makes reasonable assumptions

about the work being done. SLIM is available over

timesharing services and could serve as a useful first

108

..

approach to developing a project planning model at ISEC. It

seems to offer a little less flexibility than you would get

by developing your own model, but it is probably a good

place to start investigating the subject. (Ref. 27: p. 53]

For further information on Putnam's model, the September,

October, and November (1979) issues of Datamation provide a

3-part series explaining how to use the model.

4. The COCOMO System

Another project planning model worthy of

consideration is the COnstructive COst MOdel (COCOMO) system

developed at TRW by Barry Boehm. Boehm provides a detailed

description of the COCOMO system in his book Software

Engineering Economics. Boehm has 2 versions of COCOMO. The

first version is the basic model. It uses the estimated

number of lines of code and a variable based on 3 modes of

the estimated complexity of the project (roughly easy,

medium, or difficult). This is input into an equation that

Boehm provides resulting in an estimate of the effort

required to develop the software. Unfortunately, the

capability of the basic COCOMO system to accurately predict

the effort within a factor of 2 is only 60 percent. Some

would argue that this is less than impressive.

The second version of the COCOMO system is called

the intermediate model. To the basic model, Boehm adds 15

factors or "cost driver attributes." The attributes concern

the product itself (e.g. product complexity), computer

attributes (e.g. execution time constraints), personnel

attributes (e.g. analyst capability), and project attributes

(e.g. use of software tools). Each of these parameters are

assigned weights (called "effort multipliers" by Boehm), and

these weights are used multplicatively to adjust parameters

in the model. Boehm claims that with intermediate COCOMO,

he is within 20% of the actual results 68% of the time.

[Ref. 27: pp. 53-57]

109

There may be some problems initially testing COCOMO

at ISEC. Boehm's data base shows few COBOL data points,

therefore, whether his results are statistically valid (for

ISEC) is questionable. Further, most of Boehm's data points

are for applications other than the development of MIS.
Nonetheless, Boehm gives enough detail about how the models

are put together that he provides a solid foundation from

which to build and calibrate your own project planning

system. COCOMO passes what could be called a "reasonable

man" test. That is, the parameters in the model are those

that an experienced professional would probably expect to

find contributing to effort required in a software

development project.

With Boehm's model, or any other software

development model, one must be careful how it is applied.

The development of such an estimation model is an

evolutionary process. There are many opportunities for

problems. The process is more an art than a science. It

will take time to figure out what the bias caused by ISEC

measurement practices and how these should be accounted for

in the model. As technology changes, the model may require

adjustment. It will probably take a number of years to come

up with a useful model. 12 [Ref. 27: pp. 57-58]

E. PRODUCTIVITY IMPROVEMENT PROGRAM

It is difficult if not impossible to isolate the ASDs

from the their parent organization, ISEC, in terms of

improving the total STAMMIS effort. Policies and procedures

at ISEC have considerable impact on the process. If we are

"2Graduate students at the Naval Postgraduate School
(NPS) are developing a micro-based version of COCOMO using
the Knowledgeman data base management s ystem. ISEC may want
to contact NPS for further information regarding this
research. The point of contact is Professor Tung Bui,
Administrative Sciences Department, NPS.

110

.+ -.. . + . . + ...-..-. ..+7+,-.. o

addressing how to improve STAMMIS development and

maintenance productivity, we must include the larger system,

that is, ISEC.

There are many approaches to productivity improvement at

the organizational level. Approaching it in a haphazard way

invites problems. The best approach for ISEC may not be the

same for another Army organization. Although this author

has suggested some possible improvements at ISEC, they must

be carefully considered and evaluated. Some involve

training costs, others involve purchasing new tools, and

still others involve conducting more research (information

gathering). Because resources are limited, not all the

recommendations can or should be implemented at one time.

Tradeoffs must be made. Therefore, some type of mechanism

for determining these tradeoffs needs to be established.

One such mechanism is the establishment of a software

productivity improvement program (SPIP).

Dr. Barry Boehm provides a multi-step process for

establishing and tailoring a SPIP in his book Software

Engineering Economics. [Ref. 29: pp. 682-689] The following

subsections discuss the multi-step process of implementing a

SPIP. It is adapted from and based upon Boehm's ideas.

1. OBTAIN TOP MANAGEMENT COMMITMENT

If managers do not genuinely want improved software

productivity, the organization will not get increased

software productivity. Managers demonstrate their

intent by actions not merely words. They demonstrate

their commitment by means of investing in better

tools, recognizing and rewarding outstanding

performance, and enforcement of standards, etc.

Employees are smart. Paying only lip service to

productivity improvement will alert employees that

productivity is clearly a "back-burner concern."

2. ESTABLISH A PRODUCTIVITY AGENT

An old Army principle says "If you want something to

happen, make somebody responsible." The productivity

agent serves as the focal point for

productivity-related issues. Boehm suggests that

software cost estimation and software data collection

and analysis activities should be part of the

productivity agent's charter. This implies two

things. First, productivity duties should be

someone's full time job rather than being an

additional duty. Second, the productivity agent

should have a close connection with the task force

for productivity measurement (discussed in chapter

3). To be effective, the productivity agent should

report directly to ISEC's Chief of Staff or higher.

It may be tempting to put the responsibilities for

SPIP on the Quality Assurance Directorate. This may

be a good short-term solution while studying possible

internal reorganization or awaiting the formal

approval of additional spaces to establish a

permanent SPIP sectrj.on, but it is not the recommended

long-term solution.

3. ARRANGE BROAD-BASED PARTICIPATION

Implementing a SPIP brings inevitable changes.

Allowing the people affected by these changes is good

management. It stimulates people's enthusiasm rather

than their resistance. It also provides a more

accurate assessment of the total environment, Use of

productivity officers (discussed in chapter 3) may be

a good mechanism to channel employee ideas and

suggestions. This would help ensure communication up

and down the chain.

112

4. IDENTIFY OBJECTIVES, ALTERNATIVES, AND CONSTRAINTS

Boehm says the basic objective is to find ways of

producing an equivalent level of desired software

functionality at a reduced cost, with no loss in

product quality while taking care of employees

welfare as well. The alternatives to consider are

the controllable factors such as use of modern

programming practices, use of software tools and

improving the work environment. The constraints to

consider are government regulations, personnel

ceilings, office space limitations, and the hardware

and software resources available.

5. EVALUATE ALTERNATIVES AND CHOOSE THE BEST COMBINATION

Boehm emphasizes that by far the best results in

productivity improvement are obtained by working the

whole problem. There is a potential synergy

resulting from integrating a combination of

alternatives.

6. PREPARE PHASED IMPLEMENTATION PLAN

The plan should be incremental with the early phases

concentrating on the more straight forward,

easy-to-implement, high payoff items. Like all good

plans, it must address the "why", "what", where",
i"who", "when", "how", and "how much" questions.

7. OBTAIN THE AUTHORITY TO PROCEED

The additional resources required to implement the

plan for new or increased salaries, equipment, tools,

training, etc., require the authority to commit funds

for their procurement. These must be considered as

an investment. Productivity is not free. One should

113

o ,Z • """f ", / -" ""' " "-' " ' " - '"'" .' . '. : ." """ .' ."-". - " "". '. .. """. "''.. . -'''...'".. -'. .: ':

not expect large increases without some resources to

achieve them. The farmer who uses a tractor will be

much more productive than one behind an ox.

8. IMPLEMENT THE WHOLE PLAN

Not all parts of a productivity plan may be exciting

to implement. Getting rid of employees that are

holding back progress is not a pleasant task but if

it is not done, the ill effects on other employees

will cause further damage. Thus, the whole plan

needs to be implemented, not just the fun parts.

9. FOLLOWUP AND ITERATE

The followup implies that ISEC has a measurement

system in place. Without it, there is no mechanism

other than "gut feel" to gauge productivity. To

assist in the measurement problem, Boehm has a series

of forms that may be helpful in tracking projects.

These are included in Appendix A of his book,

Software Engineering Economics. No long-range plan

is perfect. What is good today may not be so

tomorrow. The "iterate" portion of this step allows

for the fact that the SPIP is evolutionary and should

be changed as needed.

Boehm, in another article that he co-authored, makes

some additional points about SPIP and productivity

improvement that are important. Table XVI summarizes these

points. Some are redundant with material presented earlier

but are worth repeating. [Ref. 3: pp. 30-42]

Finally, Boehm reminds us that improved software

productivity is not an end in itself. It is a means to help

people better expand their capabilities to deal with data,

information, and decisions. He emphasizes that the software

114

* . ~.

TABLE XVI

KEY POINTS SOFTWARE PRODUCTIVITY IMPROVEMENT PROGRAM

" Significant software productivity improvements
are not achieveable without the lull commitment
of higher management.

e The best way to get started on a sustained SPIP
is to establish a software productivity agent.

* Significant productivity *gains require an inte-
grated program of initiatives in several areas.

" An integrated can have an extremely large payoff.

* Improving software productivity involves a long,
sustained effort.

• In the very long-run, the biggest productivity
gains will come from increasing the use of
existing software (tools and utilities suitable
for reuse).

productivity scoreboard is just one of many ways we have to

gauge our progress toward becoming more efficient data

processing professionals. [Ref. 29: p. 689]

Besides the practical advice of Dr. Boehm on SPIPs,

Sumanth provides some useful information on (generic)

productivity improvement programs. Condensed in Table XVII

are common problems with productivity improvement programs

and how to avoid these pitfalls. [Ref. 22: pp. 483-486]

F. SUMMARY

This chapter has discussed a number of relevant

management barriers to productivity. Contract management

problems and solutions were identified. Project planning

systems were explained. A recommendation was made that ISEC

should begin preliminary work on developing a project

115

TABLE XVII

PRODUCTIVITY IMPROVEMENT PROGRAM PROBLEMS AND
SOLUTIONS

Resistance to Change

. Get employees involved. Establish appropriate
financial and non-financial incentives.

Inadequate Planning

* Carefully plan the program and its implementa-
tion. Brainstorm possible problems and develop
prevention strategies.

Modification in Data Collection

* Develop a pilot system. Test this system with
hypothetical data.

"It's Not My Program Syndrome"

* Consult employees before the program is estab-
lished for their ideas and suggestions. Make the
employees a part of the program.

Misinterpretation and Misuse of the Results

* Carefully evaluate the results. Don't read more
into the results than is actually there. Look at
the big picture. Ensure incentives do not
encourage employees to suboptimize some aspect to
the detriment of the total process.

Unwillingness to Share Productivity Gains

- Recognize employees that contribute to the effec-
tiveness of the program. Without any incentives,
long-term commitment to the program will be
threatened.

Tendency to Compromise Quality for Productivity

* Managers and employees must be trained that
quality and productivity are related. Both are
important.

planning and effort estimation model. The framework for

establishing a software productivity improvement program at

ISEC was outlined and the benefits and potential problems of

such a program given. This author recommends ISEC initiate

116

-.

the planning for integrated software productivity program

soon. Although there are definite short-term expenses to be

shouldered, the long-run payoff can be extremely high.

The next and final chapter provides the author's

conclusions and recommendations for productivity improvement

at ISEC with particular emphasis on the STAMMIS development

and maintenance process. It also provides recommendations

for areas requiring additional research.

-. 117

VII. CONCLUSIONS AND RECOMMENDATIONS

A. THESIS SUMMARY

This is a report of the productivity enhancement study

of the ISEC STAMMIS development and maintenance effort. The

study is an initial effort to identify candidate practices,

areas and projects for productivity improvement. We have

reviewed the STAMMIS development and maintenance process at

ISEC and have identified problem areas. To solve these

problems and improve productivity at the programmer, project

and organizational levels, the entire process was examined

for candidates for improvement. Four major areas were

suggested for improvement: methodology, management,

technology, and the software development environment.

Under the methodology umbrella, problems with the

traditional software life cycle and specification process

were emphasized. An alternative life cycle using

evolutionary development was suggested. The advantages and

limitations of prototyping were discussed. In addition, the

applicablity of prototyping at ISEC was established.

Probably the most important contribution of prototyping and

evolutionary development is that they tear down the walls of

misunderstanding and miscommunication thus bringing users

and developers together.

Several management issues were raised. Problems with

software contract management were explored. Some

suggestions for prevention of these problems were offered.

Helpful hints about the negotiation of contracts were also

provided. Project planning was discussed and a few possible

approaches were presented. The need for a productivity

improvement program at an organizational level was

established.

118

'..J.-----.-..~-~-:-.-. . . -

The total software development and maintenance

environment was considered. To assist in prototyping and

structured systems development, a unified software tool set

is a necessity. At the heart of this tool set is an

integrated and active data dictionary. It provides a basis

for a record management system and automates much of the

documentation process. The environment also includes the

human factors involved in the software process. These are

such things as the physical work space, the training

program, the awards and incentives program, compensation,

etc. Several of these are candidates for improvement at

ISEC.

Productivity was defined and distinguished from

production, efficiency, and effectiveness. The problems

associated with measuring performance was contrasted with

the handsome benefits that measurement offers. Some

guidelines were included to aid in the proper evaluation of

productivity measures. Several productivity measures for

software development and maintenance were explained and

evaluated. Finally, a strategy for implementing a

productivity measurement system at ISEC was presented.

B. RECOMMENDATIONS

To be as useful and realistic as possible, the study

included five days of on-site interviews and observations in

addition to the review of several dozen working documents at

ISEC and over one hundred articles and books related to this

study. Although a longer on-site period followed by a

second visit to probe some areas more thoroughly would have

been optimal, the results should be valuable to ISEC. They

provide an outsider's view of problems and potential

solutions relating to the entire software process.

119

D

The major recommendations (in relative order of

importance) in this report are described below.

1. ISEC should seek a unified software tool set that

will support all facets of software development and

maintenance. The tools chosen should support

prototyping and communicate with each other.

2. Prototyping/Evolutionary development should be

adopted as the preferred methodology for requirements

specification and systems development. They reduce

project risk, yield systems which better reflect user

needs, and usually reduce development time and

manpower requirements.

3. The implementation of a productivity measurement

system will help ISEC's management in planning,

controlling, and evaluating the software development

and maintenance process.

4. ISEC software contract management needs revamping.

ISEC needs to train its management in appropriate

contracting areas.

5. ISEC should seek the help of other federal agencies

(such as the GAO, GSA, and NBS), and DOD

organizations (such as the National Security Agency,

Air Force and Navy) to improve all aspects of the

software process. There is no need to reinvent the

wheel; a suitable framework, at least, probably

exists at one of these organizations.

6. The physical facilities at ISEC are far from ideal.

In need of improvement are the amount of work space

per employee, the number of terminals, the computer

response time, the number of conference rooms for

reviews and walkthroughs, use of office automation,

and the heating/air conditioning system.

The above suggestions should be incorporated into a total

software productivity improvement program (SPIP). The SPIP

120

.

would include a clear statement of organizational produc-

tivity objectives and a carefully thought-out plan to

gachieve them. The SPIP might include some promising produc-

tivity features such as tailoring a library of reusable code

or creating an information center to support end-users.

Results in some commercial organizations demonstrate that

productivity could double within two years with a SPIP and

the long-run gains may be even more spectacular. [Ref. 3:

p. 33] Organizational commitment is critical to the success

of the program. It should start with top management and

echo through all levels of the organization.

C. RECOMMENDATIONS FOR FURTHER STUDY

During the author's on-site visit and literature review,
0

several intriguing issues surfaced that may deserve study or

further analysis. These issues/areas for further study (in

no particular order) are discussed below.

1. Conduct a detailed analysis of software tools

applicable for ISEC addressing such issues as "What

is currently on the market?", "What do ISEC managers

and programmers want?", "What can ISEC afford?" and

"How can ISEC speed up their software tools

acquisition and training program?".

2. Conduct a feasibility study identifying and

quantifying the costs and benefits of the Army

adopting a single operating system such as MVS for

STAMMIS.

3. Conduct a capacity planning analysis of the computer

resources available for STAMMIS development and

maintenance.

4. Participate in the preliminary planning and

requirements analysis for the establishment of

STAMMIS corporate data base.

121

..

I7

5. Although DOD and General Paige seem committed to Ada,

a detailed cost/benefit analysis of it might be

enlightening.

6. Conduct and analyze a series of employee surveys

regarding: (1) their perception of problems at ISEC;

(2) their ideas and suggestions for improving

productivity; and (3) what motivates them.

7. Conduct an analysis concerning the effect of a

chargeback system (.e.g. billing DCSPER for SIDPERS

maintenance work) on STAMMIS functional proponents,

user demand and user perceptions. The study might

include the best criteria to bill the FPs and propose

an implementation plan for installing such a

chargeback system.

8. Conduct a review and analysis of good ideas already

in practice in other federal and DOD organizations

concerning: (1) contract management; (2)

productivity measurement; and (3) productivity

improvement programs; (4) software development

environments; (5) awards and incentive programs; and

(6) software tools in use.

9. Conduct a feasibility study for the collocation of

all ISEC programming directorates with their FP

counterparts.

10. Conduct research to determine what project planning

system would be most useful for ISEC. Micro-based

systems, the Putnam SLIM system, and the COCOMO model

are some potential candidates for consideration at

ISEC.

122

APPENDIX A

ACRONYMS

ACSIM - Assistant Chief of Staff for Information

Management

AESEIC U.S. Army Electronics System Engineering

and Installation Command

ASD - Assigned System Developer

COA - Comptroller of the Army

COBOL - COmmon Business Oriented Language

CPM - Critical Path Method

CPO - Civilian Personnel Office

CSC - U.S. Army Computer Systems Command

DA - Department of the Army

DCSIM - Deputy Chief of Staff for Information

Management

DCSLOG - Deputy Chief of Staff for LOGistics

DCSPER - Deputy Chief of Staff for PERsonnel

DOD - Department of Defense

ESSD - Executive Systems Software Directorate

FORTRAN - FORmula TRANslation

FP - Functional Proponent

GAO General Accounting Office

123

o,..* .- .-. •

GSA - General Services Administration

HOL - Higher Order Language

HOM - Higher Order Machine

HOS - Higher Order Software

IBM - International Business Machines, Inc.

IE - Information Engineering

IMA - Information Mission Area

IRM - Information Resource Management

ISEC - U.S. Army Information Systems

Engineering Command

ISSSC - U.S Army Information Systems Software

Support Command

MILPERCEN - MILitery PERsonnel CENter

MIS - Management Information Systems

MVS - Multiple Virtual System

NBS - National Bureau of Standards

NPS - Naval Postgraduate School

NSA - National Security Agency

OMB - Office of Management and Budget

OJT - On-the-Job-Training

PC - Personal Computer

PERT - Program Evaluation and Review Technique

PQ Teams - Productivity and Quality Teams

RAT - Resource Allocation Tool

124

. . . .°

RDC - Regional Data Center

SAILS - Standard Army Installation Logistics

System

SARSS - Standard Army Retail Supply

System

SDLC - Systems Development Life Cycle

SIDPERS - Standard Installation/Division PERsonnel

System

SPIP - Software Productivity Improvement

Program

STAMMIS - Standard Army Multi-command Management

Information System

STANFINS - STANdard FINance Systems

STARCIPS - STandard ARmy CIvilian Payroll System

STEP-UP Systems Through an Evolutionary

Process Using Prototyping

ULLS - Unit Level Logistics System

USA - United States Army

USACC - U.S. Army Communications Command

USAISC - U.S. Army Information Systems Command

VIABLE - Vertical Integrated Automation BaseLinE

VFDMIS - Vertical Force Development Management

Information System

VTAADS - Vertical The Army Authorization

Document System

125

APPENDIX B

USING GRADUATE STUDENTS TO IMPROVE PRODUCTIVITY

This author contends that Army organizations such as

ISEC should actively tap the pooi of talent of Army

fully-funded advanced degree students (and possibly other

Armed Forces students) to the maximum extent possible. Most

students must complete a thesis to fulfil their degree

requirements. Many have no idea what they would like to do

their research on. It makes economic sense to obtain a

return on the Army's investment in their education (in

addition to their service obligation).

To actively recruit students for thesis work will

require 3 things.

1. ISEC will need to identify target projects in
"'thesis-sized chunks". Large projects will have be

logically decomposed.

2. ISEC will need to budget TDY funds for research

expenses. Typically, expenses for a thesis range

from $1000 to $3000. There are many variables

involved but a good planning figure would be $2000

per study.

3. ISEC should send knowledgeable representatives who

relate well to students to market their theses

research topics. Timing of these visits is critical

to the success of the program. Too late and everyone

already has a topic; too early and no one will know

what they want to do.

Remember that each student has at least one and usually

two PhDs for advisors so the quality of the product is

generally good. Using Army students to solve Army problems

helps everyone. It is a viable alternative to using

126

consultants or in-house assets. To ignore the student

knowledge-base is to waste an Army resource.

Besides the students, the faculty at many educational

institutions are always looking for interesting research

work. They have a special expertise worth considering for

those projects which ISEC cannot (for whatever reason) do

themselves or which are beyond the scope of student thesis

work.

127

..

LIST OF REFERENCES

1. Moore, Barry M., "Systems and ApplicationDevelopment", he Economics of Information ,
vol. 2, John WT-y & bons, Incu., 1982, pp.

2. . Martin, James, Systems Design From Provably Correct

Constructs Prent le-THfal, n-cT. l-n Tewood Mifrs, New
Jersey, 19A5.

3. Boehm, Barry W , Dr. et al., "A Software Development
Environment for ImJroving Productivity", IEEE
Computer, vol 17, June 1984, pp. 30- 4.

4. Martin, James, Application Development Without
Programmers, Prentice-Faii, Inc., Inglewood Cliffs,
New Jersey, 1982.

5. Booch, Grady, Software Engineering With ADA, The
BenjaminICummings Yuiithing Company, I-c., Menlo
Park, California, 1983.

6. Doyle David,,K., Lieutenant General USA and Craven,
Ronald E.,,, Mission: To Bring Order To Information
Revolution , Army, July 1985, pp. 30-33.

7. "Army, Seeks Hill O.K. for Fifth Deputy Chief of
Stafi", Army Times, 17 September 1984, p. 4.

8. Donahue Robert J., Major General, USA and CraveD,
Ronald L, Directorates Spearhead Merger Initiative
Army, July 1985, pp. 33-35.

9. "Belvoir Command Renamed", Army Times, 12 August 1985,
p. 38.

10. Nolan, Rchard L., "Managing the Crises in Data
Processing 1 Harvard Business Review, vol. 57,
March--April 79, pp. 115-126.

11. Senn, James A Information Systems in Management,
Second Edition, W adsworth Fubish-ngComp-any, i8.

12. "Army Automation Software Design and Development"
Technical Bulletin 18-103, Headquarters Department ot
the Army, Washington D.C., January, 1983.

13. Jones, Capers (ed.) Programmer Productivity: Issues
for the Eighties, E Caalog No EH 186-7 -- EEE
Compu-er-Society, P.O. Box 80452, Los Angles,
California, 1981.

128

14. U.S. Army Information Systems Software Support
Command, Interview with managers, Personnel and Force
Accounting Directorate, during author visit, 7 June
1985.

15. Edwards, Mark H., "Software Salaries Survey - Where Do
You Stand?', Software News, July 1985, pp. 58-69.

16. Cozette, Chuck, "g7th Annual DP Salary Survey -
Prosperity Continues", Infosystems, June 1985, pp.27-38.

17. U.S. Army Information Systems Software Support
Command, Interview with VFDMIS managers, Personnel and
Force Accounting Directorate, during author visit, 8
June 1985.

18. Kroenke, David, Database Processng, Second Edition,
Science Research Associates, 193 .

19. U.S. Army Computer Systems Command, Letter, Subject:
New Approaches for Systems Design and Maintenance
T-echniques, uncla--sifie , v JTy-T9847

20. U.S. Army Communications Command, untitled letter
(with enclosure), unclassified, 21 September 1984.

21. Siegel, Irving H Dr., Company Productivity, The W. E.
Upjohn Institute tor 'mploymentkesearcn, Kalamazoo,
Michigan, 1980.

22. Sumanth, David J.,Dr. Productivity Engineering and
Management, McGraw-Hili Book Company, Inc.,1984.

23. Toffler, Alvin, Previews and Premises, William Morrow
& Company, New York, 1983-

24. Parikh, Girsh "Techniques of Measuring Prog rammer
Productivity , Data Management, June 1985, pp. 18-29.

25. Jones, T. .. "Measuring Programming Quality and
Productivity, IBM Systems Journa, vol. 17, no. 1i
1978, pp. 39-63.

26. Boehm, Barry W., Dr., "Software and Its Impact: A
antitative Assessment" Datamation, May 1973, pp.8-59.

27. Lyons, Norman R and Bo er, Dan C. A Productivity
Enhancement StuAy of the FMSO Sofrware Effort,
November, t983T --

129

i.. . -

2 , -: :'.".- :, .: --i-.:,o , "1., .:i.:,:.(::';:- -::.- : .:: (..... ?i -. .:?.?.-" . ..". -.:,/ ¢

28. Arthur Lowell Jay Programmer Productivity, John
Wiley & Sons, Inc., 19837.

29. Boehm Barr W., Dr. Software Engineering Economics,
Prentice-Hall, Inc., Engewood, New Jersey
1981.

30. Crossman,.Trgvor D., "Taking the Measure of Prorammer
Productivity , Datamation, May 1979, pp. 144-147

31. Drummond, Steve "Measuring Aplications DevelopmentPerformance", Datamation, 15 February 1985, PP.
102-108.

32. Brown, Patrick, "Managing Software Development",
Datamation, 15 April 1985, pp. 133-136.

33. Fairley. Richard E. Software Engineering Concepts,
McGraw-1il, Inc., 1985.

34. Gilb Tom, Software Metrics, Winthrop Publishers,
Inc.: Cambridge, Massachusetts, 1977.

35. U.S. Army Information Systems Software Support
Command, Slide presentation and briefing by managers,
Development Center Ft Lee, during author visit, 6 June
1985.

36. Hamilton M., and Zeldin, S., "The Functional Life
Cycle Model and Its Automation: USE.IT", The Journal

oSstems and Software, vol. 3, no. 1, "-arch 1983,
p. 25-62.

37. Bunyard, Jerry M. Major General, USA and Coward,
James M., Today s Aisks in Software Development - Can
They Be Significantly Reduced?", Concepts - The
Journal of Defense Systems Acquisition, voi. 3, no.--4,. AuumIiiV182.

38. McCracken David D. and Jackson, Michael A,
Life-Cycle Concept Considered Harmful", ACM Software

e Notes, vol. 7, no. 2, April-t982, pp.

39. Gladden G R., "Stop the Life-Cycle, I Want to Get
Off" AM Software Engineering Notes, vol. 7, no. 2,
April I-"827p35 -9.

40. Boehm, Barry W., DN., "Seven Basic Principles Of
Software Engineering . The Journal of Systems and
Software, vol. 3, no. , M-ch 1983, pp-3-zT.

41. Paige, Emmett., Lieutenant General, USA, Speech,
Army s New Approach to Information Systems

Acquisition", Washington D.C., 12 April 1985.

130

...

42. "Prototypin: Modeling Your Way Through", Software
News, vol.4, no. 8, August 1984, P. 29.

43. Jones, Clifford B., Software Development,
Prentice-Hall International, London, 1980.

44. Brooks, Frederick P. Jr., The Mythical Man-Month,
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1975.

45. Boar, Bernard H Application Prototyping, John Wiley
& Sons, Inc., 1984.

46. Noel, Alan F Major, USA, Prototyping with Data
Dictionaries Ffor Requirements Analyss, Master'
Ihesis, Nava-- Postgraduate cool, Monterey,
California, March 1985.

47. "Speeding Up Application Development", EDP Analyzer,
vol. 23, no. 4, April 1985, pp. 1-16.

48. Parnas, David L., "Designing Software for Ease of
Extension and Contraction' IEEE Transactions on
Software Engineering, March 1979 -pp. 226-23.5.

49. Orr, Kenneth, "Managing the Software Crises",
Computerworld, 15 July 1985, pp. ID/I-ID/9.

50. Powers James H., Colonel, USA, Unpublished Document,
"STEP-UP - Getting Better Computer Systems to the Army
Faster", undated.

51. Goodwin, Connie, "Considerate Carefully,, Planned
Office Environments Reduce Employee Anxiety , Data
Management, June 1985, pp. 18-19.

52. Wasserman, Anthony I., "Organizational and Ergonomic
Aspects of Software Development Environments",
o Sotware Development Environments, IEEE Catalog No.
"EHO8-7- _.om uter Society, Los Alimitos,' California, 1981, pp. 335-6.

53. McCue, Gerald M., "IBM's Santa Teresa Laboratory -
Architectural Design for Program Development", IBM
Systems Journal, vol. 17, no. I, 1978, pp. 4-25.

54. Whitacker, Richard M., Application of Motivational
Models, Master s Thesis Unversity--of Virginia,
Fairfax, Virginia, August 1982.

55. Fitz-enz, Jac, "Who is the DP Professional",
Datamation, September 1978, pp. 124-128.

131

56. Curtis Bill, "Substantiating Programmer Variability",
Proceeaings of the IEEE, vol. 69, no. 7, July 1981, p.

57. Couger, Daniel J., and ZVwacki, Robert A "What
Motivates DP Professionals', Datamation, September
1978, pp. 116-123.

58. Stanley Frank, J., "Motivating DP Personnel",
Auerback Information Management Series, no. 2-01-06,
Auerbacl Pulishners Inc., Philadelpia, Pennsylvania,
September/October 1982.

59. "Ways To. Improve Federal Management And Use Of
Productivity Based Reward Sy stems , GAO Report To The
Congress of the United States, no. --FPC t8-24-, -T1
Drecdember t-80.

60. Schindler Paul E., "General Dynamics' MIS Finds Way
To Raise Productivity 50%" Information Week, 29 July
1985, pp. 30-35.

61. "Greater Emphasis On Testing Needed To Make Computer
Systems More Reliable And Less Costly', GAO Report To
The Congress of the United States, no. GA0 C -,27---Ocoer 193"3.

62. Zelkowitz, Marvin V., et al.A "Software Engineering
Practices in the US and Japan , IEEE Computer, vol.
17, no. 6, June 1984, pp. 57-66.

63. Bazelans Rud "Productivity - The Role of the Tools
Group , 1CM SIGSOFT Software Engineering Notes, vol.
10, no. 3,July 9., PP. 63-75.

64. Howden, Will~am E., "Contemporary Software Development
Environments , Communications of the ACM, vol. 25, no.
5, May 1982, pp. 3i-329.

65. Salisbury, lan B., and Manley John H. "Editor's
Introduction , The Journal of Systems and Software,
vol. 3, no. 1, March -983, p.-t.

66. Grove, Andrew S., High Output Management, Random
House, Inc., New York,--83.

67. Peters, Thomas J., and Waterman, Robert H. Jr. In
Search of Excellence, Warner Books, Inc., New tork-

68. Stanley, Frank J., "Establishing a Project Management
Methodoly Auerbach Information Management Series,

no. 3-10-1, Auerbach Publisiers 1nc., Philadelphia,
Pennsylvania, undated.

132

69. Inmon, William H., Management Control of Data
Processing Prentice-Ha Inc., Englewood Clirfs,-Ne
Jersey, 83.

70. Arthur, Ja "Software Quality Measurement",
Datamation, 15 December 1984, pp. 115-120.

71. "Federal Agencies' Maintenance Of Computer Programs:
Expensive And Undermanaged", GAO Report o The
Congress of the United States, no. AF1 YI-Z5, -2-6
Februry 1981.

72. "Contracting For Computer Software Development -
Serious Problems Require Management Attention To Avoid
Wasting Additional Millions , GAO Report To The
Congress of the United States, no. -Ft -8OT4,-9
qovemoer 1979.

73. Harris, Charles E., "Negotiating Software Contracts",
Datamation, 15 July 1985, pp. 52-58.

74. Brooks, Frederick P. Jr., "The Mythical Man-Month",
Datamation, December 1974, p. 44-52.

75. Horton, Len, "Users Find a Tool To Manage Themselves",
Software News, May, 1985, pp. 45-49.

76. Horton, Len, "Could Project Management Be The Next
Suer Product'?", Software News, May, 1985, pp.41- 4.

77. Putnam, Lawrencg H. and Fitzsimmons, Ann, "Estimating
Software Costs , Datamation, October, 1979, pp.
171-178.

133

....:.:. :...L i ..i:...i .i .. :.-..............i..

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Librar, C ode 0142 2
Naval Postgraduate School
Monterey California 93943-5100

3. Computer Technology Programs, Code 37
Naval Postgraduate School
Monterey California 93943-5100

4. Professor David R. Whipple
Code 54wp
Department of Administrative Sciences
Naval Postgraduate School
Monterey California 93943-5100

5. Associate Professor Norman R. Lyons
Code 541b
Department of Administrative Sciences
Naval Postgraduate School
Monterey California 93943-5100

6. LTC Richard E. Broome 2
6405 Wy negate Drive
Spring ie d, Virginia 22152

7. CPT Timothy F. Robertson 7
1147 St. Paul Avenue
St. Paul, Minnesota 55116

8. Professor Gordon H. Bradley 2
Code 52bz
Department of Computer Science
Naval Postgraduate School
Monterey California 93943-5100

9. Associate Professor Michael P. Spencer
Code 54xq
Department of Administrative Sciences
Naval Postgraduate School
Monterey California 93943-5100

10. Commander 10
U.S. Army Information Systems
Engineering Command
Ft Belvoir, Virginia 22060-5456

134

71"

~..-.-------..~.-.-........
-PV

S

FILMED

DTIC
............... -.-

........

........................

